រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

7x-8y=9,4x+3y=-10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
7x-8y=9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
7x=8y+9
បូក 8y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{7}\left(8y+9\right)
ចែកជ្រុងទាំងពីនឹង 7។
x=\frac{8}{7}y+\frac{9}{7}
គុណ \frac{1}{7} ដង 8y+9។
4\left(\frac{8}{7}y+\frac{9}{7}\right)+3y=-10
ជំនួស \frac{8y+9}{7} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x+3y=-10។
\frac{32}{7}y+\frac{36}{7}+3y=-10
គុណ 4 ដង \frac{8y+9}{7}។
\frac{53}{7}y+\frac{36}{7}=-10
បូក \frac{32y}{7} ជាមួយ 3y។
\frac{53}{7}y=-\frac{106}{7}
ដក \frac{36}{7} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{53}{7} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{8}{7}\left(-2\right)+\frac{9}{7}
ជំនួស -2 សម្រាប់ y ក្នុង x=\frac{8}{7}y+\frac{9}{7}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-16+9}{7}
គុណ \frac{8}{7} ដង -2។
x=-1
បូក \frac{9}{7} ជាមួយ -\frac{16}{7} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-1,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
7x-8y=9,4x+3y=-10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}7&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}7&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}7&-8\\4&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7\times 3-\left(-8\times 4\right)}&-\frac{-8}{7\times 3-\left(-8\times 4\right)}\\-\frac{4}{7\times 3-\left(-8\times 4\right)}&\frac{7}{7\times 3-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{53}&\frac{8}{53}\\-\frac{4}{53}&\frac{7}{53}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{53}\times 9+\frac{8}{53}\left(-10\right)\\-\frac{4}{53}\times 9+\frac{7}{53}\left(-10\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
7x-8y=9,4x+3y=-10
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4\times 7x+4\left(-8\right)y=4\times 9,7\times 4x+7\times 3y=7\left(-10\right)
ដើម្បីធ្វើឲ្យ 7x និង 4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 7។
28x-32y=36,28x+21y=-70
ផ្ទៀងផ្ទាត់។
28x-28x-32y-21y=36+70
ដក 28x+21y=-70 ពី 28x-32y=36 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-32y-21y=36+70
បូក 28x ជាមួយ -28x។ ការលុបតួ 28x និង -28x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-53y=36+70
បូក -32y ជាមួយ -21y។
-53y=106
បូក 36 ជាមួយ 70។
y=-2
ចែកជ្រុងទាំងពីនឹង -53។
4x+3\left(-2\right)=-10
ជំនួស -2 សម្រាប់ y ក្នុង 4x+3y=-10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
4x-6=-10
គុណ 3 ដង -2។
4x=-4
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង 4។
x=-1,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។