រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

7x+y=-9,-3x-y=5
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
7x+y=-9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
7x=-y-9
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{7}\left(-y-9\right)
ចែកជ្រុងទាំងពីនឹង 7។
x=-\frac{1}{7}y-\frac{9}{7}
គុណ \frac{1}{7} ដង -y-9។
-3\left(-\frac{1}{7}y-\frac{9}{7}\right)-y=5
ជំនួស \frac{-y-9}{7} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -3x-y=5។
\frac{3}{7}y+\frac{27}{7}-y=5
គុណ -3 ដង \frac{-y-9}{7}។
-\frac{4}{7}y+\frac{27}{7}=5
បូក \frac{3y}{7} ជាមួយ -y។
-\frac{4}{7}y=\frac{8}{7}
ដក \frac{27}{7} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{4}{7} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{1}{7}\left(-2\right)-\frac{9}{7}
ជំនួស -2 សម្រាប់ y ក្នុង x=-\frac{1}{7}y-\frac{9}{7}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{2-9}{7}
គុណ -\frac{1}{7} ដង -2។
x=-1
បូក -\frac{9}{7} ជាមួយ \frac{2}{7} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-1,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
7x+y=-9,-3x-y=5
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\5\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-3\right)}&-\frac{1}{7\left(-1\right)-\left(-3\right)}\\-\frac{-3}{7\left(-1\right)-\left(-3\right)}&\frac{7}{7\left(-1\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&-\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-9\right)+\frac{1}{4}\times 5\\-\frac{3}{4}\left(-9\right)-\frac{7}{4}\times 5\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
7x+y=-9,-3x-y=5
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-3\times 7x-3y=-3\left(-9\right),7\left(-3\right)x+7\left(-1\right)y=7\times 5
ដើម្បីធ្វើឲ្យ 7x និង -3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 7។
-21x-3y=27,-21x-7y=35
ផ្ទៀងផ្ទាត់។
-21x+21x-3y+7y=27-35
ដក -21x-7y=35 ពី -21x-3y=27 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y+7y=27-35
បូក -21x ជាមួយ 21x។ ការលុបតួ -21x និង 21x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
4y=27-35
បូក -3y ជាមួយ 7y។
4y=-8
បូក 27 ជាមួយ -35។
y=-2
ចែកជ្រុងទាំងពីនឹង 4។
-3x-\left(-2\right)=5
ជំនួស -2 សម្រាប់ y ក្នុង -3x-y=5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-3x=3
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង -3។
x=-1,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។