ដោះស្រាយសម្រាប់ x, y
x=-5
y=0
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
5x-6y=-25,4x-3y+20=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-6y=-25
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=6y-25
បូក 6y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(6y-25\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{6}{5}y-5
គុណ \frac{1}{5} ដង 6y-25។
4\left(\frac{6}{5}y-5\right)-3y+20=0
ជំនួស \frac{6y}{5}-5 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x-3y+20=0។
\frac{24}{5}y-20-3y+20=0
គុណ 4 ដង \frac{6y}{5}-5។
\frac{9}{5}y-20+20=0
បូក \frac{24y}{5} ជាមួយ -3y។
\frac{9}{5}y=0
បូក -20 ជាមួយ 20។
y=0
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{9}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-5
ជំនួស 0 សម្រាប់ y ក្នុង x=\frac{6}{5}y-5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-5,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x-6y=-25,4x-3y+20=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-25\\-20\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-6\\4&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-\left(-6\times 4\right)}&-\frac{-6}{5\left(-3\right)-\left(-6\times 4\right)}\\-\frac{4}{5\left(-3\right)-\left(-6\times 4\right)}&\frac{5}{5\left(-3\right)-\left(-6\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-25\\-20\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-\frac{4}{9}&\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-25\\-20\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-25\right)+\frac{2}{3}\left(-20\right)\\-\frac{4}{9}\left(-25\right)+\frac{5}{9}\left(-20\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-5,y=0
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x-6y=-25,4x-3y+20=0
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4\times 5x+4\left(-6\right)y=4\left(-25\right),5\times 4x+5\left(-3\right)y+5\times 20=0
ដើម្បីធ្វើឲ្យ 5x និង 4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
20x-24y=-100,20x-15y+100=0
ផ្ទៀងផ្ទាត់។
20x-20x-24y+15y-100=-100
ដក 20x-15y+100=0 ពី 20x-24y=-100 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-24y+15y-100=-100
បូក 20x ជាមួយ -20x។ ការលុបតួ 20x និង -20x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-9y-100=-100
បូក -24y ជាមួយ 15y។
-9y=0
បូក 100 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=0
ចែកជ្រុងទាំងពីនឹង -9។
4x+20=0
ជំនួស 0 សម្រាប់ y ក្នុង 4x-3y+20=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
4x=-20
ដក 20 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-5
ចែកជ្រុងទាំងពីនឹង 4។
x=-5,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}