ដោះស្រាយសម្រាប់ x, y
x = \frac{33}{7} = 4\frac{5}{7} \approx 4.714285714
y = \frac{8}{7} = 1\frac{1}{7} \approx 1.142857143
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
5x-4y=19,x+2y=7
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-4y=19
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=4y+19
បូក 4y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(4y+19\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{4}{5}y+\frac{19}{5}
គុណ \frac{1}{5} ដង 4y+19។
\frac{4}{5}y+\frac{19}{5}+2y=7
ជំនួស \frac{4y+19}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+2y=7។
\frac{14}{5}y+\frac{19}{5}=7
បូក \frac{4y}{5} ជាមួយ 2y។
\frac{14}{5}y=\frac{16}{5}
ដក \frac{19}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{8}{7}
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{14}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{4}{5}\times \frac{8}{7}+\frac{19}{5}
ជំនួស \frac{8}{7} សម្រាប់ y ក្នុង x=\frac{4}{5}y+\frac{19}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{32}{35}+\frac{19}{5}
គុណ \frac{4}{5} ដង \frac{8}{7} ដោយការគុណភាគយកចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{33}{7}
បូក \frac{19}{5} ជាមួយ \frac{32}{35} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{33}{7},y=\frac{8}{7}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x-4y=19,x+2y=7
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-4\\1&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\right)}&-\frac{-4}{5\times 2-\left(-4\right)}\\-\frac{1}{5\times 2-\left(-4\right)}&\frac{5}{5\times 2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{1}{14}&\frac{5}{14}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 19+\frac{2}{7}\times 7\\-\frac{1}{14}\times 19+\frac{5}{14}\times 7\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33}{7}\\\frac{8}{7}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{33}{7},y=\frac{8}{7}
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x-4y=19,x+2y=7
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5x-4y=19,5x+5\times 2y=5\times 7
ដើម្បីធ្វើឲ្យ 5x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
5x-4y=19,5x+10y=35
ផ្ទៀងផ្ទាត់។
5x-5x-4y-10y=19-35
ដក 5x+10y=35 ពី 5x-4y=19 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-4y-10y=19-35
បូក 5x ជាមួយ -5x។ ការលុបតួ 5x និង -5x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-14y=19-35
បូក -4y ជាមួយ -10y។
-14y=-16
បូក 19 ជាមួយ -35។
y=\frac{8}{7}
ចែកជ្រុងទាំងពីនឹង -14។
x+2\times \frac{8}{7}=7
ជំនួស \frac{8}{7} សម្រាប់ y ក្នុង x+2y=7។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x+\frac{16}{7}=7
គុណ 2 ដង \frac{8}{7}។
x=\frac{33}{7}
ដក \frac{16}{7} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{33}{7},y=\frac{8}{7}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}