រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

5x-3y=2,6x+2y=-5
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-3y=2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=3y+2
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(3y+2\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{3}{5}y+\frac{2}{5}
គុណ \frac{1}{5} ដង 3y+2។
6\left(\frac{3}{5}y+\frac{2}{5}\right)+2y=-5
ជំនួស \frac{3y+2}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 6x+2y=-5។
\frac{18}{5}y+\frac{12}{5}+2y=-5
គុណ 6 ដង \frac{3y+2}{5}។
\frac{28}{5}y+\frac{12}{5}=-5
បូក \frac{18y}{5} ជាមួយ 2y។
\frac{28}{5}y=-\frac{37}{5}
ដក \frac{12}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{37}{28}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{28}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{5}\left(-\frac{37}{28}\right)+\frac{2}{5}
ជំនួស -\frac{37}{28} សម្រាប់ y ក្នុង x=\frac{3}{5}y+\frac{2}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{111}{140}+\frac{2}{5}
គុណ \frac{3}{5} ដង -\frac{37}{28} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=-\frac{11}{28}
បូក \frac{2}{5} ជាមួយ -\frac{111}{140} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-\frac{11}{28},y=-\frac{37}{28}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x-3y=2,6x+2y=-5
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-3\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}5&-3\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-3\\6&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\times 6\right)}&-\frac{-3}{5\times 2-\left(-3\times 6\right)}\\-\frac{6}{5\times 2-\left(-3\times 6\right)}&\frac{5}{5\times 2-\left(-3\times 6\right)}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{28}\\-\frac{3}{14}&\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 2+\frac{3}{28}\left(-5\right)\\-\frac{3}{14}\times 2+\frac{5}{28}\left(-5\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{28}\\-\frac{37}{28}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-\frac{11}{28},y=-\frac{37}{28}
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x-3y=2,6x+2y=-5
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
6\times 5x+6\left(-3\right)y=6\times 2,5\times 6x+5\times 2y=5\left(-5\right)
ដើម្បីធ្វើឲ្យ 5x និង 6x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 6 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
30x-18y=12,30x+10y=-25
ផ្ទៀងផ្ទាត់។
30x-30x-18y-10y=12+25
ដក 30x+10y=-25 ពី 30x-18y=12 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-18y-10y=12+25
បូក 30x ជាមួយ -30x។ ការលុបតួ 30x និង -30x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-28y=12+25
បូក -18y ជាមួយ -10y។
-28y=37
បូក 12 ជាមួយ 25។
y=-\frac{37}{28}
ចែកជ្រុងទាំងពីនឹង -28។
6x+2\left(-\frac{37}{28}\right)=-5
ជំនួស -\frac{37}{28} សម្រាប់ y ក្នុង 6x+2y=-5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
6x-\frac{37}{14}=-5
គុណ 2 ដង -\frac{37}{28}។
6x=-\frac{33}{14}
បូក \frac{37}{14} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{11}{28}
ចែកជ្រុងទាំងពីនឹង 6។
x=-\frac{11}{28},y=-\frac{37}{28}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។