រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

5x-4y=-2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 4y ពីជ្រុងទាំងពីរ។
5y+1-x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
5y-x=-1
ដក 1 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
5x-4y=-2,-x+5y=-1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-4y=-2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=4y-2
បូក 4y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(4y-2\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{4}{5}y-\frac{2}{5}
គុណ \frac{1}{5} ដង 4y-2។
-\left(\frac{4}{5}y-\frac{2}{5}\right)+5y=-1
ជំនួស \frac{4y-2}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -x+5y=-1។
-\frac{4}{5}y+\frac{2}{5}+5y=-1
គុណ -1 ដង \frac{4y-2}{5}។
\frac{21}{5}y+\frac{2}{5}=-1
បូក -\frac{4y}{5} ជាមួយ 5y។
\frac{21}{5}y=-\frac{7}{5}
ដក \frac{2}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{1}{3}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{21}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{4}{5}\left(-\frac{1}{3}\right)-\frac{2}{5}
ជំនួស -\frac{1}{3} សម្រាប់ y ក្នុង x=\frac{4}{5}y-\frac{2}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{4}{15}-\frac{2}{5}
គុណ \frac{4}{5} ដង -\frac{1}{3} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=-\frac{2}{3}
បូក -\frac{2}{5} ជាមួយ -\frac{4}{15} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-\frac{2}{3},y=-\frac{1}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x-4y=-2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 4y ពីជ្រុងទាំងពីរ។
5y+1-x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
5y-x=-1
ដក 1 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
5x-4y=-2,-x+5y=-1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}&-\frac{-4}{5\times 5-\left(-4\left(-1\right)\right)}\\-\frac{-1}{5\times 5-\left(-4\left(-1\right)\right)}&\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&\frac{4}{21}\\\frac{1}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\left(-2\right)+\frac{4}{21}\left(-1\right)\\\frac{1}{21}\left(-2\right)+\frac{5}{21}\left(-1\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-\frac{1}{3}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-\frac{2}{3},y=-\frac{1}{3}
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x-4y=-2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 4y ពីជ្រុងទាំងពីរ។
5y+1-x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
5y-x=-1
ដក 1 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
5x-4y=-2,-x+5y=-1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-5x-\left(-4y\right)=-\left(-2\right),5\left(-1\right)x+5\times 5y=5\left(-1\right)
ដើម្បីធ្វើឲ្យ 5x និង -x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
-5x+4y=2,-5x+25y=-5
ផ្ទៀងផ្ទាត់។
-5x+5x+4y-25y=2+5
ដក -5x+25y=-5 ពី -5x+4y=2 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4y-25y=2+5
បូក -5x ជាមួយ 5x។ ការលុបតួ -5x និង 5x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-21y=2+5
បូក 4y ជាមួយ -25y។
-21y=7
បូក 2 ជាមួយ 5។
y=-\frac{1}{3}
ចែកជ្រុងទាំងពីនឹង -21។
-x+5\left(-\frac{1}{3}\right)=-1
ជំនួស -\frac{1}{3} សម្រាប់ y ក្នុង -x+5y=-1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-x-\frac{5}{3}=-1
គុណ 5 ដង -\frac{1}{3}។
-x=\frac{2}{3}
បូក \frac{5}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{2}{3}
ចែកជ្រុងទាំងពីនឹង -1។
x=-\frac{2}{3},y=-\frac{1}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។