ដោះស្រាយសម្រាប់ x, y
x=4
y=2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
5x-2y=16
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
7x+2y=32
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2y ទៅជ្រុងទាំងពីរ។
5x-2y=16,7x+2y=32
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-2y=16
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=2y+16
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(2y+16\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{2}{5}y+\frac{16}{5}
គុណ \frac{1}{5} ដង 16+2y។
7\left(\frac{2}{5}y+\frac{16}{5}\right)+2y=32
ជំនួស \frac{16+2y}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 7x+2y=32។
\frac{14}{5}y+\frac{112}{5}+2y=32
គុណ 7 ដង \frac{16+2y}{5}។
\frac{24}{5}y+\frac{112}{5}=32
បូក \frac{14y}{5} ជាមួយ 2y។
\frac{24}{5}y=\frac{48}{5}
ដក \frac{112}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{24}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{2}{5}\times 2+\frac{16}{5}
ជំនួស 2 សម្រាប់ y ក្នុង x=\frac{2}{5}y+\frac{16}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{4+16}{5}
គុណ \frac{2}{5} ដង 2។
x=4
បូក \frac{16}{5} ជាមួយ \frac{4}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=4,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x-2y=16
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
7x+2y=32
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2y ទៅជ្រុងទាំងពីរ។
5x-2y=16,7x+2y=32
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-2\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\32\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-2\\7&2\end{matrix}\right))\left(\begin{matrix}5&-2\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\7&2\end{matrix}\right))\left(\begin{matrix}16\\32\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-2\\7&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\7&2\end{matrix}\right))\left(\begin{matrix}16\\32\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\7&2\end{matrix}\right))\left(\begin{matrix}16\\32\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-2\times 7\right)}&-\frac{-2}{5\times 2-\left(-2\times 7\right)}\\-\frac{7}{5\times 2-\left(-2\times 7\right)}&\frac{5}{5\times 2-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}16\\32\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\-\frac{7}{24}&\frac{5}{24}\end{matrix}\right)\left(\begin{matrix}16\\32\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 16+\frac{1}{12}\times 32\\-\frac{7}{24}\times 16+\frac{5}{24}\times 32\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=4,y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x-2y=16
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
7x+2y=32
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2y ទៅជ្រុងទាំងពីរ។
5x-2y=16,7x+2y=32
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
7\times 5x+7\left(-2\right)y=7\times 16,5\times 7x+5\times 2y=5\times 32
ដើម្បីធ្វើឲ្យ 5x និង 7x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 7 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
35x-14y=112,35x+10y=160
ផ្ទៀងផ្ទាត់។
35x-35x-14y-10y=112-160
ដក 35x+10y=160 ពី 35x-14y=112 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-14y-10y=112-160
បូក 35x ជាមួយ -35x។ ការលុបតួ 35x និង -35x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-24y=112-160
បូក -14y ជាមួយ -10y។
-24y=-48
បូក 112 ជាមួយ -160។
y=2
ចែកជ្រុងទាំងពីនឹង -24។
7x+2\times 2=32
ជំនួស 2 សម្រាប់ y ក្នុង 7x+2y=32។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
7x+4=32
គុណ 2 ដង 2។
7x=28
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=4
ចែកជ្រុងទាំងពីនឹង 7។
x=4,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}