ដោះស្រាយសម្រាប់ x, y
x=1
y=2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
5x+y=7,-3x+7y=11
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x+y=7
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=-y+7
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(-y+7\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=-\frac{1}{5}y+\frac{7}{5}
គុណ \frac{1}{5} ដង -y+7។
-3\left(-\frac{1}{5}y+\frac{7}{5}\right)+7y=11
ជំនួស \frac{-y+7}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -3x+7y=11។
\frac{3}{5}y-\frac{21}{5}+7y=11
គុណ -3 ដង \frac{-y+7}{5}។
\frac{38}{5}y-\frac{21}{5}=11
បូក \frac{3y}{5} ជាមួយ 7y។
\frac{38}{5}y=\frac{76}{5}
បូក \frac{21}{5} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{38}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{1}{5}\times 2+\frac{7}{5}
ជំនួស 2 សម្រាប់ y ក្នុង x=-\frac{1}{5}y+\frac{7}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-2+7}{5}
គុណ -\frac{1}{5} ដង 2។
x=1
បូក \frac{7}{5} ជាមួយ -\frac{2}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=1,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x+y=7,-3x+7y=11
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\11\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&1\\-3&7\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-3\right)}&-\frac{1}{5\times 7-\left(-3\right)}\\-\frac{-3}{5\times 7-\left(-3\right)}&\frac{5}{5\times 7-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}&-\frac{1}{38}\\\frac{3}{38}&\frac{5}{38}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}\times 7-\frac{1}{38}\times 11\\\frac{3}{38}\times 7+\frac{5}{38}\times 11\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=1,y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x+y=7,-3x+7y=11
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-3\times 5x-3y=-3\times 7,5\left(-3\right)x+5\times 7y=5\times 11
ដើម្បីធ្វើឲ្យ 5x និង -3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
-15x-3y=-21,-15x+35y=55
ផ្ទៀងផ្ទាត់។
-15x+15x-3y-35y=-21-55
ដក -15x+35y=55 ពី -15x-3y=-21 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y-35y=-21-55
បូក -15x ជាមួយ 15x។ ការលុបតួ -15x និង 15x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-38y=-21-55
បូក -3y ជាមួយ -35y។
-38y=-76
បូក -21 ជាមួយ -55។
y=2
ចែកជ្រុងទាំងពីនឹង -38។
-3x+7\times 2=11
ជំនួស 2 សម្រាប់ y ក្នុង -3x+7y=11។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-3x+14=11
គុណ 7 ដង 2។
-3x=-3
ដក 14 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង -3។
x=1,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}