រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x-3y-10=0,3x+4y+5=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x-3y-10=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x-3y=10
បូក 10 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
4x=3y+10
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(3y+10\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{3}{4}y+\frac{5}{2}
គុណ \frac{1}{4} ដង 3y+10។
3\left(\frac{3}{4}y+\frac{5}{2}\right)+4y+5=0
ជំនួស \frac{3y}{4}+\frac{5}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+4y+5=0។
\frac{9}{4}y+\frac{15}{2}+4y+5=0
គុណ 3 ដង \frac{3y}{4}+\frac{5}{2}។
\frac{25}{4}y+\frac{15}{2}+5=0
បូក \frac{9y}{4} ជាមួយ 4y។
\frac{25}{4}y+\frac{25}{2}=0
បូក \frac{15}{2} ជាមួយ 5។
\frac{25}{4}y=-\frac{25}{2}
ដក \frac{25}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{25}{4} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{4}\left(-2\right)+\frac{5}{2}
ជំនួស -2 សម្រាប់ y ក្នុង x=\frac{3}{4}y+\frac{5}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-3+5}{2}
គុណ \frac{3}{4} ដង -2។
x=1
បូក \frac{5}{2} ជាមួយ -\frac{3}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=1,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x-3y-10=0,3x+4y+5=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&-3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-5\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}4&-3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&-3\\3&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-\left(-3\times 3\right)}&-\frac{-3}{4\times 4-\left(-3\times 3\right)}\\-\frac{3}{4\times 4-\left(-3\times 3\right)}&\frac{4}{4\times 4-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-5\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{3}{25}\\-\frac{3}{25}&\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}10\\-5\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 10+\frac{3}{25}\left(-5\right)\\-\frac{3}{25}\times 10+\frac{4}{25}\left(-5\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=1,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x-3y-10=0,3x+4y+5=0
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 4x+3\left(-3\right)y+3\left(-10\right)=0,4\times 3x+4\times 4y+4\times 5=0
ដើម្បីធ្វើឲ្យ 4x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
12x-9y-30=0,12x+16y+20=0
ផ្ទៀងផ្ទាត់។
12x-12x-9y-16y-30-20=0
ដក 12x+16y+20=0 ពី 12x-9y-30=0 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-9y-16y-30-20=0
បូក 12x ជាមួយ -12x។ ការលុបតួ 12x និង -12x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-25y-30-20=0
បូក -9y ជាមួយ -16y។
-25y-50=0
បូក -30 ជាមួយ -20។
-25y=50
បូក 50 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែកជ្រុងទាំងពីនឹង -25។
3x+4\left(-2\right)+5=0
ជំនួស -2 សម្រាប់ y ក្នុង 3x+4y+5=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x-8+5=0
គុណ 4 ដង -2។
3x-3=0
បូក -8 ជាមួយ 5។
3x=3
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង 3។
x=1,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។