រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x-3y=1,5x+y=7
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x-3y=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=3y+1
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(3y+1\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{3}{4}y+\frac{1}{4}
គុណ \frac{1}{4} ដង 3y+1។
5\left(\frac{3}{4}y+\frac{1}{4}\right)+y=7
ជំនួស \frac{3y+1}{4} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x+y=7។
\frac{15}{4}y+\frac{5}{4}+y=7
គុណ 5 ដង \frac{3y+1}{4}។
\frac{19}{4}y+\frac{5}{4}=7
បូក \frac{15y}{4} ជាមួយ y។
\frac{19}{4}y=\frac{23}{4}
ដក \frac{5}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{23}{19}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{19}{4} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{4}\times \frac{23}{19}+\frac{1}{4}
ជំនួស \frac{23}{19} សម្រាប់ y ក្នុង x=\frac{3}{4}y+\frac{1}{4}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{69}{76}+\frac{1}{4}
គុណ \frac{3}{4} ដង \frac{23}{19} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{22}{19}
បូក \frac{1}{4} ជាមួយ \frac{69}{76} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{22}{19},y=\frac{23}{19}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x-3y=1,5x+y=7
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&-3\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}4&-3\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&-3\\5&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\times 5\right)}&-\frac{-3}{4-\left(-3\times 5\right)}\\-\frac{5}{4-\left(-3\times 5\right)}&\frac{4}{4-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&\frac{3}{19}\\-\frac{5}{19}&\frac{4}{19}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}+\frac{3}{19}\times 7\\-\frac{5}{19}+\frac{4}{19}\times 7\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{19}\\\frac{23}{19}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{22}{19},y=\frac{23}{19}
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x-3y=1,5x+y=7
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5\times 4x+5\left(-3\right)y=5,4\times 5x+4y=4\times 7
ដើម្បីធ្វើឲ្យ 4x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
20x-15y=5,20x+4y=28
ផ្ទៀងផ្ទាត់។
20x-20x-15y-4y=5-28
ដក 20x+4y=28 ពី 20x-15y=5 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-15y-4y=5-28
បូក 20x ជាមួយ -20x។ ការលុបតួ 20x និង -20x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-19y=5-28
បូក -15y ជាមួយ -4y។
-19y=-23
បូក 5 ជាមួយ -28។
y=\frac{23}{19}
ចែកជ្រុងទាំងពីនឹង -19។
5x+\frac{23}{19}=7
ជំនួស \frac{23}{19} សម្រាប់ y ក្នុង 5x+y=7។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x=\frac{110}{19}
ដក \frac{23}{19} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{22}{19}
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{22}{19},y=\frac{23}{19}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។