រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x-3y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 3y ពីជ្រុងទាំងពីរ។
y+3-x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y-x=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
4x-3y=0,-x+y=-3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x-3y=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=3y
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\times 3y
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{3}{4}y
គុណ \frac{1}{4} ដង 3y។
-\frac{3}{4}y+y=-3
ជំនួស \frac{3y}{4} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -x+y=-3។
\frac{1}{4}y=-3
បូក -\frac{3y}{4} ជាមួយ y។
y=-12
គុណជ្រុងទាំងពីរនឹង 4។
x=\frac{3}{4}\left(-12\right)
ជំនួស -12 សម្រាប់ y ក្នុង x=\frac{3}{4}y។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-9
គុណ \frac{3}{4} ដង -12។
x=-9,y=-12
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x-3y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 3y ពីជ្រុងទាំងពីរ។
y+3-x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y-x=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
4x-3y=0,-x+y=-3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&-3\\-1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\left(-1\right)\right)}&-\frac{-3}{4-\left(-3\left(-1\right)\right)}\\-\frac{-1}{4-\left(-3\left(-1\right)\right)}&\frac{4}{4-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&3\\1&4\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\left(-3\right)\\4\left(-3\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-12\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-9,y=-12
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x-3y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 3y ពីជ្រុងទាំងពីរ។
y+3-x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y-x=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
4x-3y=0,-x+y=-3
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-4x-\left(-3y\right)=0,4\left(-1\right)x+4y=4\left(-3\right)
ដើម្បីធ្វើឲ្យ 4x និង -x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
-4x+3y=0,-4x+4y=-12
ផ្ទៀងផ្ទាត់។
-4x+4x+3y-4y=12
ដក -4x+4y=-12 ពី -4x+3y=0 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
3y-4y=12
បូក -4x ជាមួយ 4x។ ការលុបតួ -4x និង 4x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-y=12
បូក 3y ជាមួយ -4y។
y=-12
ចែកជ្រុងទាំងពីនឹង -1។
-x-12=-3
ជំនួស -12 សម្រាប់ y ក្នុង -x+y=-3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-x=9
បូក 12 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-9
ចែកជ្រុងទាំងពីនឹង -1។
x=-9,y=-12
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។