រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x+2y=-18,-2x-5y=10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x+2y=-18
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=-2y-18
ដក 2y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(-2y-18\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=-\frac{1}{2}y-\frac{9}{2}
គុណ \frac{1}{4} ដង -2y-18។
-2\left(-\frac{1}{2}y-\frac{9}{2}\right)-5y=10
ជំនួស \frac{-y-9}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -2x-5y=10។
y+9-5y=10
គុណ -2 ដង \frac{-y-9}{2}។
-4y+9=10
បូក y ជាមួយ -5y។
-4y=1
ដក 9 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{1}{4}
ចែកជ្រុងទាំងពីនឹង -4។
x=-\frac{1}{2}\left(-\frac{1}{4}\right)-\frac{9}{2}
ជំនួស -\frac{1}{4} សម្រាប់ y ក្នុង x=-\frac{1}{2}y-\frac{9}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{1}{8}-\frac{9}{2}
គុណ -\frac{1}{2} ដង -\frac{1}{4} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=-\frac{35}{8}
បូក -\frac{9}{2} ជាមួយ \frac{1}{8} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-\frac{35}{8},y=-\frac{1}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x+2y=-18,-2x-5y=10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right))\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right))\left(\begin{matrix}-18\\10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&2\\-2&-5\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right))\left(\begin{matrix}-18\\10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right))\left(\begin{matrix}-18\\10\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4\left(-5\right)-2\left(-2\right)}&-\frac{2}{4\left(-5\right)-2\left(-2\right)}\\-\frac{-2}{4\left(-5\right)-2\left(-2\right)}&\frac{4}{4\left(-5\right)-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-18\\10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{1}{8}\\-\frac{1}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-18\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}\left(-18\right)+\frac{1}{8}\times 10\\-\frac{1}{8}\left(-18\right)-\frac{1}{4}\times 10\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{35}{8}\\-\frac{1}{4}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-\frac{35}{8},y=-\frac{1}{4}
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x+2y=-18,-2x-5y=10
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2\times 4x-2\times 2y=-2\left(-18\right),4\left(-2\right)x+4\left(-5\right)y=4\times 10
ដើម្បីធ្វើឲ្យ 4x និង -2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
-8x-4y=36,-8x-20y=40
ផ្ទៀងផ្ទាត់។
-8x+8x-4y+20y=36-40
ដក -8x-20y=40 ពី -8x-4y=36 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-4y+20y=36-40
បូក -8x ជាមួយ 8x។ ការលុបតួ -8x និង 8x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
16y=36-40
បូក -4y ជាមួយ 20y។
16y=-4
បូក 36 ជាមួយ -40។
y=-\frac{1}{4}
ចែកជ្រុងទាំងពីនឹង 16។
-2x-5\left(-\frac{1}{4}\right)=10
ជំនួស -\frac{1}{4} សម្រាប់ y ក្នុង -2x-5y=10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-2x+\frac{5}{4}=10
គុណ -5 ដង -\frac{1}{4}។
-2x=\frac{35}{4}
ដក \frac{5}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{35}{8}
ចែកជ្រុងទាំងពីនឹង -2។
x=-\frac{35}{8},y=-\frac{1}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។