ដោះស្រាយសម្រាប់ y, x
x=2
y=3
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3y-6x=-3
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 6x ពីជ្រុងទាំងពីរ។
2x+y=7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម y ទៅជ្រុងទាំងពីរ។
3y-6x=-3,y+2x=7
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3y-6x=-3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3y=6x-3
បូក 6x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{3}\left(6x-3\right)
ចែកជ្រុងទាំងពីនឹង 3។
y=2x-1
គុណ \frac{1}{3} ដង 6x-3។
2x-1+2x=7
ជំនួស 2x-1 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y+2x=7។
4x-1=7
បូក 2x ជាមួយ 2x។
4x=8
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង 4។
y=2\times 2-1
ជំនួស 2 សម្រាប់ x ក្នុង y=2x-1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=4-1
គុណ 2 ដង 2។
y=3
បូក -1 ជាមួយ 4។
y=3,x=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3y-6x=-3
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 6x ពីជ្រុងទាំងពីរ។
2x+y=7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម y ទៅជ្រុងទាំងពីរ។
3y-6x=-3,y+2x=7
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&-6\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}3&-6\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&-6\\1&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-6\right)}&-\frac{-6}{3\times 2-\left(-6\right)}\\-\frac{1}{3\times 2-\left(-6\right)}&\frac{3}{3\times 2-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-3\\7\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{2}\\-\frac{1}{12}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-3\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-3\right)+\frac{1}{2}\times 7\\-\frac{1}{12}\left(-3\right)+\frac{1}{4}\times 7\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
y=3,x=2
ទាញយកធាតុម៉ាទ្រីស y និង x។
3y-6x=-3
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 6x ពីជ្រុងទាំងពីរ។
2x+y=7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម y ទៅជ្រុងទាំងពីរ។
3y-6x=-3,y+2x=7
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3y-6x=-3,3y+3\times 2x=3\times 7
ដើម្បីធ្វើឲ្យ 3y និង y ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
3y-6x=-3,3y+6x=21
ផ្ទៀងផ្ទាត់។
3y-3y-6x-6x=-3-21
ដក 3y+6x=21 ពី 3y-6x=-3 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-6x-6x=-3-21
បូក 3y ជាមួយ -3y។ ការលុបតួ 3y និង -3y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-12x=-3-21
បូក -6x ជាមួយ -6x។
-12x=-24
បូក -3 ជាមួយ -21។
x=2
ចែកជ្រុងទាំងពីនឹង -12។
y+2\times 2=7
ជំនួស 2 សម្រាប់ x ក្នុង y+2x=7។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y+4=7
គុណ 2 ដង 2។
y=3
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=3,x=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}