រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y+x=7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
3x-y=5,x+y=7
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x-y=5
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=y+5
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(y+5\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{1}{3}y+\frac{5}{3}
គុណ \frac{1}{3} ដង y+5។
\frac{1}{3}y+\frac{5}{3}+y=7
ជំនួស \frac{5+y}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+y=7។
\frac{4}{3}y+\frac{5}{3}=7
បូក \frac{y}{3} ជាមួយ y។
\frac{4}{3}y=\frac{16}{3}
ដក \frac{5}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=4
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{4}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{3}\times 4+\frac{5}{3}
ជំនួស 4 សម្រាប់ y ក្នុង x=\frac{1}{3}y+\frac{5}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{4+5}{3}
គុណ \frac{1}{3} ដង 4។
x=3
បូក \frac{5}{3} ជាមួយ \frac{4}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y+x=7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
3x-y=5,x+y=7
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&-1\\1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-1\right)}&-\frac{-1}{3-\left(-1\right)}\\-\frac{1}{3-\left(-1\right)}&\frac{3}{3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5+\frac{1}{4}\times 7\\-\frac{1}{4}\times 5+\frac{3}{4}\times 7\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=4
ទាញយកធាតុម៉ាទ្រីស x និង y។
y+x=7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
3x-y=5,x+y=7
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x-y=5,3x+3y=3\times 7
ដើម្បីធ្វើឲ្យ 3x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
3x-y=5,3x+3y=21
ផ្ទៀងផ្ទាត់។
3x-3x-y-3y=5-21
ដក 3x+3y=21 ពី 3x-y=5 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-y-3y=5-21
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-4y=5-21
បូក -y ជាមួយ -3y។
-4y=-16
បូក 5 ជាមួយ -21។
y=4
ចែកជ្រុងទាំងពីនឹង -4។
x+4=7
ជំនួស 4 សម្រាប់ y ក្នុង x+y=7។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=3
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=3,y=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។