រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x-2y=20,5x+8y=22
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x-2y=20
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=2y+20
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(2y+20\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{2}{3}y+\frac{20}{3}
គុណ \frac{1}{3} ដង 20+2y។
5\left(\frac{2}{3}y+\frac{20}{3}\right)+8y=22
ជំនួស \frac{20+2y}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x+8y=22។
\frac{10}{3}y+\frac{100}{3}+8y=22
គុណ 5 ដង \frac{20+2y}{3}។
\frac{34}{3}y+\frac{100}{3}=22
បូក \frac{10y}{3} ជាមួយ 8y។
\frac{34}{3}y=-\frac{34}{3}
ដក \frac{100}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{34}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{2}{3}\left(-1\right)+\frac{20}{3}
ជំនួស -1 សម្រាប់ y ក្នុង x=\frac{2}{3}y+\frac{20}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-2+20}{3}
គុណ \frac{2}{3} ដង -1។
x=6
បូក \frac{20}{3} ជាមួយ -\frac{2}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=6,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x-2y=20,5x+8y=22
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&-2\\5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\22\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}3&-2\\5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}20\\22\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&-2\\5&8\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}20\\22\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}20\\22\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-\left(-2\times 5\right)}&-\frac{-2}{3\times 8-\left(-2\times 5\right)}\\-\frac{5}{3\times 8-\left(-2\times 5\right)}&\frac{3}{3\times 8-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}20\\22\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&\frac{1}{17}\\-\frac{5}{34}&\frac{3}{34}\end{matrix}\right)\left(\begin{matrix}20\\22\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\times 20+\frac{1}{17}\times 22\\-\frac{5}{34}\times 20+\frac{3}{34}\times 22\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=6,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x-2y=20,5x+8y=22
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5\times 3x+5\left(-2\right)y=5\times 20,3\times 5x+3\times 8y=3\times 22
ដើម្បីធ្វើឲ្យ 3x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
15x-10y=100,15x+24y=66
ផ្ទៀងផ្ទាត់។
15x-15x-10y-24y=100-66
ដក 15x+24y=66 ពី 15x-10y=100 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-10y-24y=100-66
បូក 15x ជាមួយ -15x។ ការលុបតួ 15x និង -15x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-34y=100-66
បូក -10y ជាមួយ -24y។
-34y=34
បូក 100 ជាមួយ -66។
y=-1
ចែកជ្រុងទាំងពីនឹង -34។
5x+8\left(-1\right)=22
ជំនួស -1 សម្រាប់ y ក្នុង 5x+8y=22។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x-8=22
គុណ 8 ដង -1។
5x=30
បូក 8 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=6
ចែកជ្រុងទាំងពីនឹង 5។
x=6,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។