រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x+y=1,4x+4y=3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+y=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-y+1
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-y+1\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{1}{3}y+\frac{1}{3}
គុណ \frac{1}{3} ដង -y+1។
4\left(-\frac{1}{3}y+\frac{1}{3}\right)+4y=3
ជំនួស \frac{-y+1}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x+4y=3។
-\frac{4}{3}y+\frac{4}{3}+4y=3
គុណ 4 ដង \frac{-y+1}{3}។
\frac{8}{3}y+\frac{4}{3}=3
បូក -\frac{4y}{3} ជាមួយ 4y។
\frac{8}{3}y=\frac{5}{3}
ដក \frac{4}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{5}{8}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{8}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{1}{3}\times \frac{5}{8}+\frac{1}{3}
ជំនួស \frac{5}{8} សម្រាប់ y ក្នុង x=-\frac{1}{3}y+\frac{1}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{5}{24}+\frac{1}{3}
គុណ -\frac{1}{3} ដង \frac{5}{8} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{1}{8}
បូក \frac{1}{3} ជាមួយ -\frac{5}{24} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{1}{8},y=\frac{5}{8}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+y=1,4x+4y=3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&1\\4&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&1\\4&4\end{matrix}\right))\left(\begin{matrix}3&1\\4&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&1\\4&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-4}&-\frac{1}{3\times 4-4}\\-\frac{4}{3\times 4-4}&\frac{3}{3\times 4-4}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{8}\\-\frac{1}{2}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}-\frac{1}{8}\times 3\\-\frac{1}{2}+\frac{3}{8}\times 3\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\\\frac{5}{8}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{1}{8},y=\frac{5}{8}
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+y=1,4x+4y=3
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4\times 3x+4y=4,3\times 4x+3\times 4y=3\times 3
ដើម្បីធ្វើឲ្យ 3x និង 4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
12x+4y=4,12x+12y=9
ផ្ទៀងផ្ទាត់។
12x-12x+4y-12y=4-9
ដក 12x+12y=9 ពី 12x+4y=4 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4y-12y=4-9
បូក 12x ជាមួយ -12x។ ការលុបតួ 12x និង -12x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-8y=4-9
បូក 4y ជាមួយ -12y។
-8y=-5
បូក 4 ជាមួយ -9។
y=\frac{5}{8}
ចែកជ្រុងទាំងពីនឹង -8។
4x+4\times \frac{5}{8}=3
ជំនួស \frac{5}{8} សម្រាប់ y ក្នុង 4x+4y=3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
4x+\frac{5}{2}=3
គុណ 4 ដង \frac{5}{8}។
4x=\frac{1}{2}
ដក \frac{5}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{8}
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{1}{8},y=\frac{5}{8}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។