ដោះស្រាយសម្រាប់ x, y
x=5
y=-1
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3x+8y=7,4x-3y=23
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+8y=7
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-8y+7
ដក 8y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-8y+7\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{8}{3}y+\frac{7}{3}
គុណ \frac{1}{3} ដង -8y+7។
4\left(-\frac{8}{3}y+\frac{7}{3}\right)-3y=23
ជំនួស \frac{-8y+7}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x-3y=23។
-\frac{32}{3}y+\frac{28}{3}-3y=23
គុណ 4 ដង \frac{-8y+7}{3}។
-\frac{41}{3}y+\frac{28}{3}=23
បូក -\frac{32y}{3} ជាមួយ -3y។
-\frac{41}{3}y=\frac{41}{3}
ដក \frac{28}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{41}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{8}{3}\left(-1\right)+\frac{7}{3}
ជំនួស -1 សម្រាប់ y ក្នុង x=-\frac{8}{3}y+\frac{7}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{8+7}{3}
គុណ -\frac{8}{3} ដង -1។
x=5
បូក \frac{7}{3} ជាមួយ \frac{8}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=5,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+8y=7,4x-3y=23
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&8\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\23\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&8\\4&-3\end{matrix}\right))\left(\begin{matrix}3&8\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\23\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&8\\4&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\23\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\23\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-8\times 4}&-\frac{8}{3\left(-3\right)-8\times 4}\\-\frac{4}{3\left(-3\right)-8\times 4}&\frac{3}{3\left(-3\right)-8\times 4}\end{matrix}\right)\left(\begin{matrix}7\\23\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{41}&\frac{8}{41}\\\frac{4}{41}&-\frac{3}{41}\end{matrix}\right)\left(\begin{matrix}7\\23\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{41}\times 7+\frac{8}{41}\times 23\\\frac{4}{41}\times 7-\frac{3}{41}\times 23\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=5,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+8y=7,4x-3y=23
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4\times 3x+4\times 8y=4\times 7,3\times 4x+3\left(-3\right)y=3\times 23
ដើម្បីធ្វើឲ្យ 3x និង 4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
12x+32y=28,12x-9y=69
ផ្ទៀងផ្ទាត់។
12x-12x+32y+9y=28-69
ដក 12x-9y=69 ពី 12x+32y=28 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
32y+9y=28-69
បូក 12x ជាមួយ -12x។ ការលុបតួ 12x និង -12x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
41y=28-69
បូក 32y ជាមួយ 9y។
41y=-41
បូក 28 ជាមួយ -69។
y=-1
ចែកជ្រុងទាំងពីនឹង 41។
4x-3\left(-1\right)=23
ជំនួស -1 សម្រាប់ y ក្នុង 4x-3y=23។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
4x+3=23
គុណ -3 ដង -1។
4x=20
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=5
ចែកជ្រុងទាំងពីនឹង 4។
x=5,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}