ដោះស្រាយសម្រាប់ x, y
x=3
y=-5
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
y+2x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
3x+4y=-11,2x+y=1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+4y=-11
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-4y-11
ដក 4y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-4y-11\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{4}{3}y-\frac{11}{3}
គុណ \frac{1}{3} ដង -4y-11។
2\left(-\frac{4}{3}y-\frac{11}{3}\right)+y=1
ជំនួស \frac{-4y-11}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+y=1។
-\frac{8}{3}y-\frac{22}{3}+y=1
គុណ 2 ដង \frac{-4y-11}{3}។
-\frac{5}{3}y-\frac{22}{3}=1
បូក -\frac{8y}{3} ជាមួយ y។
-\frac{5}{3}y=\frac{25}{3}
បូក \frac{22}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-5
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{5}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{4}{3}\left(-5\right)-\frac{11}{3}
ជំនួស -5 សម្រាប់ y ក្នុង x=-\frac{4}{3}y-\frac{11}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{20-11}{3}
គុណ -\frac{4}{3} ដង -5។
x=3
បូក -\frac{11}{3} ជាមួយ \frac{20}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=-5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y+2x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
3x+4y=-11,2x+y=1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&4\\2&1\end{matrix}\right))\left(\begin{matrix}3&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\2&1\end{matrix}\right))\left(\begin{matrix}-11\\1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&4\\2&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\2&1\end{matrix}\right))\left(\begin{matrix}-11\\1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\2&1\end{matrix}\right))\left(\begin{matrix}-11\\1\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4\times 2}&-\frac{4}{3-4\times 2}\\-\frac{2}{3-4\times 2}&\frac{3}{3-4\times 2}\end{matrix}\right)\left(\begin{matrix}-11\\1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{4}{5}\\\frac{2}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-11\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-11\right)+\frac{4}{5}\\\frac{2}{5}\left(-11\right)-\frac{3}{5}\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=-5
ទាញយកធាតុម៉ាទ្រីស x និង y។
y+2x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
3x+4y=-11,2x+y=1
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2\times 3x+2\times 4y=2\left(-11\right),3\times 2x+3y=3
ដើម្បីធ្វើឲ្យ 3x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
6x+8y=-22,6x+3y=3
ផ្ទៀងផ្ទាត់។
6x-6x+8y-3y=-22-3
ដក 6x+3y=3 ពី 6x+8y=-22 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
8y-3y=-22-3
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
5y=-22-3
បូក 8y ជាមួយ -3y។
5y=-25
បូក -22 ជាមួយ -3។
y=-5
ចែកជ្រុងទាំងពីនឹង 5។
2x-5=1
ជំនួស -5 សម្រាប់ y ក្នុង 2x+y=1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x=6
បូក 5 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង 2។
x=3,y=-5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}