ដោះស្រាយសម្រាប់ x, y
x=-2
y=-1
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3x+4y=-10,x-4y=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+4y=-10
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-4y-10
ដក 4y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-4y-10\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{4}{3}y-\frac{10}{3}
គុណ \frac{1}{3} ដង -4y-10។
-\frac{4}{3}y-\frac{10}{3}-4y=2
ជំនួស \frac{-4y-10}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-4y=2។
-\frac{16}{3}y-\frac{10}{3}=2
បូក -\frac{4y}{3} ជាមួយ -4y។
-\frac{16}{3}y=\frac{16}{3}
បូក \frac{10}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{16}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{4}{3}\left(-1\right)-\frac{10}{3}
ជំនួស -1 សម្រាប់ y ក្នុង x=-\frac{4}{3}y-\frac{10}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{4-10}{3}
គុណ -\frac{4}{3} ដង -1។
x=-2
បូក -\frac{10}{3} ជាមួយ \frac{4}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-2,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+4y=-10,x-4y=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&4\\1&-4\end{matrix}\right))\left(\begin{matrix}3&4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-4\end{matrix}\right))\left(\begin{matrix}-10\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&4\\1&-4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-4\end{matrix}\right))\left(\begin{matrix}-10\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-4\end{matrix}\right))\left(\begin{matrix}-10\\2\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-4}&-\frac{4}{3\left(-4\right)-4}\\-\frac{1}{3\left(-4\right)-4}&\frac{3}{3\left(-4\right)-4}\end{matrix}\right)\left(\begin{matrix}-10\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{1}{16}&-\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}-10\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-10\right)+\frac{1}{4}\times 2\\\frac{1}{16}\left(-10\right)-\frac{3}{16}\times 2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-2,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+4y=-10,x-4y=2
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+4y=-10,3x+3\left(-4\right)y=3\times 2
ដើម្បីធ្វើឲ្យ 3x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
3x+4y=-10,3x-12y=6
ផ្ទៀងផ្ទាត់។
3x-3x+4y+12y=-10-6
ដក 3x-12y=6 ពី 3x+4y=-10 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4y+12y=-10-6
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
16y=-10-6
បូក 4y ជាមួយ 12y។
16y=-16
បូក -10 ជាមួយ -6។
y=-1
ចែកជ្រុងទាំងពីនឹង 16។
x-4\left(-1\right)=2
ជំនួស -1 សម្រាប់ y ក្នុង x-4y=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x+4=2
គុណ -4 ដង -1។
x=-2
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-2,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}