រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x+3y=12,3x+2y=13
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+3y=12
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-3y+12
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-3y+12\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-y+4
គុណ \frac{1}{3} ដង -3y+12។
3\left(-y+4\right)+2y=13
ជំនួស -y+4 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+2y=13។
-3y+12+2y=13
គុណ 3 ដង -y+4។
-y+12=13
បូក -3y ជាមួយ 2y។
-y=1
ដក 12 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែកជ្រុងទាំងពីនឹង -1។
x=-\left(-1\right)+4
ជំនួស -1 សម្រាប់ y ក្នុង x=-y+4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=1+4
គុណ -1 ដង -1។
x=5
បូក 4 ជាមួយ 1។
x=5,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+3y=12,3x+2y=13
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\13\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}3&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&3\\3&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-3\times 3}&-\frac{3}{3\times 2-3\times 3}\\-\frac{3}{3\times 2-3\times 3}&\frac{3}{3\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&1\\1&-1\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 12+13\\12-13\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=5,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+3y=12,3x+2y=13
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x-3x+3y-2y=12-13
ដក 3x+2y=13 ពី 3x+3y=12 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
3y-2y=12-13
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
y=12-13
បូក 3y ជាមួយ -2y។
y=-1
បូក 12 ជាមួយ -13។
3x+2\left(-1\right)=13
ជំនួស -1 សម្រាប់ y ក្នុង 3x+2y=13។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x-2=13
គុណ 2 ដង -1។
3x=15
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=5
ចែកជ្រុងទាំងពីនឹង 3។
x=5,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។