រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x+2y=3,x-y=21
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+2y=3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-2y+3
ដក 2y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-2y+3\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{2}{3}y+1
គុណ \frac{1}{3} ដង -2y+3។
-\frac{2}{3}y+1-y=21
ជំនួស -\frac{2y}{3}+1 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-y=21។
-\frac{5}{3}y+1=21
បូក -\frac{2y}{3} ជាមួយ -y។
-\frac{5}{3}y=20
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-12
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{5}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{2}{3}\left(-12\right)+1
ជំនួស -12 សម្រាប់ y ក្នុង x=-\frac{2}{3}y+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=8+1
គុណ -\frac{2}{3} ដង -12។
x=9
បូក 1 ជាមួយ 8។
x=9,y=-12
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+2y=3,x-y=21
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\21\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&2\\1&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{2}{3\left(-1\right)-2}\\-\frac{1}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}3\\21\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}3\\21\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 3+\frac{2}{5}\times 21\\\frac{1}{5}\times 3-\frac{3}{5}\times 21\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-12\end{matrix}\right)
ធ្វើនព្វន្ត។
x=9,y=-12
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+2y=3,x-y=21
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+2y=3,3x+3\left(-1\right)y=3\times 21
ដើម្បីធ្វើឲ្យ 3x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
3x+2y=3,3x-3y=63
ផ្ទៀងផ្ទាត់។
3x-3x+2y+3y=3-63
ដក 3x-3y=63 ពី 3x+2y=3 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
2y+3y=3-63
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
5y=3-63
បូក 2y ជាមួយ 3y។
5y=-60
បូក 3 ជាមួយ -63។
y=-12
ចែកជ្រុងទាំងពីនឹង 5។
x-\left(-12\right)=21
ជំនួស -12 សម្រាប់ y ក្នុង x-y=21។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=9
ដក 12 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=9,y=-12
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។