រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x+2y=-10,2x-10y=-1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+2y=-10
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-2y-10
ដក 2y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-2y-10\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{2}{3}y-\frac{10}{3}
គុណ \frac{1}{3} ដង -2y-10។
2\left(-\frac{2}{3}y-\frac{10}{3}\right)-10y=-1
ជំនួស \frac{-2y-10}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x-10y=-1។
-\frac{4}{3}y-\frac{20}{3}-10y=-1
គុណ 2 ដង \frac{-2y-10}{3}។
-\frac{34}{3}y-\frac{20}{3}=-1
បូក -\frac{4y}{3} ជាមួយ -10y។
-\frac{34}{3}y=\frac{17}{3}
បូក \frac{20}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{1}{2}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{34}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{10}{3}
ជំនួស -\frac{1}{2} សម្រាប់ y ក្នុង x=-\frac{2}{3}y-\frac{10}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{1-10}{3}
គុណ -\frac{2}{3} ដង -\frac{1}{2} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=-3
បូក -\frac{10}{3} ជាមួយ \frac{1}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-3,y=-\frac{1}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+2y=-10,2x-10y=-1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&2\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}3&2\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&2\\2&-10\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{3\left(-10\right)-2\times 2}&-\frac{2}{3\left(-10\right)-2\times 2}\\-\frac{2}{3\left(-10\right)-2\times 2}&\frac{3}{3\left(-10\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}-10\\-1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{1}{17}\\\frac{1}{17}&-\frac{3}{34}\end{matrix}\right)\left(\begin{matrix}-10\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\left(-10\right)+\frac{1}{17}\left(-1\right)\\\frac{1}{17}\left(-10\right)-\frac{3}{34}\left(-1\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-\frac{1}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-3,y=-\frac{1}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+2y=-10,2x-10y=-1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2\times 3x+2\times 2y=2\left(-10\right),3\times 2x+3\left(-10\right)y=3\left(-1\right)
ដើម្បីធ្វើឲ្យ 3x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
6x+4y=-20,6x-30y=-3
ផ្ទៀងផ្ទាត់។
6x-6x+4y+30y=-20+3
ដក 6x-30y=-3 ពី 6x+4y=-20 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4y+30y=-20+3
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
34y=-20+3
បូក 4y ជាមួយ 30y។
34y=-17
បូក -20 ជាមួយ 3។
y=-\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 34។
2x-10\left(-\frac{1}{2}\right)=-1
ជំនួស -\frac{1}{2} សម្រាប់ y ក្នុង 2x-10y=-1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x+5=-1
គុណ -10 ដង -\frac{1}{2}។
2x=-6
ដក 5 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-3
ចែកជ្រុងទាំងពីនឹង 2។
x=-3,y=-\frac{1}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។