ដោះស្រាយសម្រាប់ x, y, z
x = -\frac{52}{25} = -2\frac{2}{25} = -2.08
y = \frac{142}{25} = 5\frac{17}{25} = 5.68
z=-\frac{3}{25}=-0.12
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
z=-3x-2y+5
ដោះស្រាយ 3x+2y+z=5 សម្រាប់ z។
x+y+5\left(-3x-2y+5\right)=3 x-y+2\left(-3x-2y+5\right)=-8
ជំនួស -3x-2y+5 សម្រាប់ z នៅក្នុងសមីការរទីពីរ និងទីបី។
y=\frac{22}{9}-\frac{14}{9}x x=-y+\frac{18}{5}
ដោះស្រាយសមីការរទាំងនេះសម្រាប់ y និង x រៀងៗខ្លួន។
x=-\left(\frac{22}{9}-\frac{14}{9}x\right)+\frac{18}{5}
ជំនួស \frac{22}{9}-\frac{14}{9}x សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត x=-y+\frac{18}{5}។
x=-\frac{52}{25}
ដោះស្រាយ x=-\left(\frac{22}{9}-\frac{14}{9}x\right)+\frac{18}{5} សម្រាប់ x។
y=\frac{22}{9}-\frac{14}{9}\left(-\frac{52}{25}\right)
ជំនួស -\frac{52}{25} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត y=\frac{22}{9}-\frac{14}{9}x។
y=\frac{142}{25}
គណនា y ពី y=\frac{22}{9}-\frac{14}{9}\left(-\frac{52}{25}\right)។
z=-3\left(-\frac{52}{25}\right)-2\times \frac{142}{25}+5
ជំនួស \frac{142}{25} សម្រាប់ y និង -\frac{52}{25} សម្រាប់ x នៅក្នុងសមីការរ z=-3x-2y+5។
z=-\frac{3}{25}
គណនា z ពី z=-3\left(-\frac{52}{25}\right)-2\times \frac{142}{25}+5។
x=-\frac{52}{25} y=\frac{142}{25} z=-\frac{3}{25}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}