ដោះស្រាយសម្រាប់ x, y
x=-3
y=2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3x+10y=11,-10x-8y=14
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+10y=11
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-10y+11
ដក 10y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-10y+11\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{10}{3}y+\frac{11}{3}
គុណ \frac{1}{3} ដង -10y+11។
-10\left(-\frac{10}{3}y+\frac{11}{3}\right)-8y=14
ជំនួស \frac{-10y+11}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -10x-8y=14។
\frac{100}{3}y-\frac{110}{3}-8y=14
គុណ -10 ដង \frac{-10y+11}{3}។
\frac{76}{3}y-\frac{110}{3}=14
បូក \frac{100y}{3} ជាមួយ -8y។
\frac{76}{3}y=\frac{152}{3}
បូក \frac{110}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{76}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{10}{3}\times 2+\frac{11}{3}
ជំនួស 2 សម្រាប់ y ក្នុង x=-\frac{10}{3}y+\frac{11}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-20+11}{3}
គុណ -\frac{10}{3} ដង 2។
x=-3
បូក \frac{11}{3} ជាមួយ -\frac{20}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-3,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+10y=11,-10x-8y=14
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\14\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-10\left(-10\right)}&-\frac{10}{3\left(-8\right)-10\left(-10\right)}\\-\frac{-10}{3\left(-8\right)-10\left(-10\right)}&\frac{3}{3\left(-8\right)-10\left(-10\right)}\end{matrix}\right)\left(\begin{matrix}11\\14\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}&-\frac{5}{38}\\\frac{5}{38}&\frac{3}{76}\end{matrix}\right)\left(\begin{matrix}11\\14\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}\times 11-\frac{5}{38}\times 14\\\frac{5}{38}\times 11+\frac{3}{76}\times 14\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-3,y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+10y=11,-10x-8y=14
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-10\times 3x-10\times 10y=-10\times 11,3\left(-10\right)x+3\left(-8\right)y=3\times 14
ដើម្បីធ្វើឲ្យ 3x និង -10x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -10 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
-30x-100y=-110,-30x-24y=42
ផ្ទៀងផ្ទាត់។
-30x+30x-100y+24y=-110-42
ដក -30x-24y=42 ពី -30x-100y=-110 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-100y+24y=-110-42
បូក -30x ជាមួយ 30x។ ការលុបតួ -30x និង 30x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-76y=-110-42
បូក -100y ជាមួយ 24y។
-76y=-152
បូក -110 ជាមួយ -42។
y=2
ចែកជ្រុងទាំងពីនឹង -76។
-10x-8\times 2=14
ជំនួស 2 សម្រាប់ y ក្នុង -10x-8y=14។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-10x-16=14
គុណ -8 ដង 2។
-10x=30
បូក 16 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-3
ចែកជ្រុងទាំងពីនឹង -10។
x=-3,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}