រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2y-2x=-40,2y+3x=10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2y-2x=-40
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2y=2x-40
បូក 2x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{2}\left(2x-40\right)
ចែកជ្រុងទាំងពីនឹង 2។
y=x-20
គុណ \frac{1}{2} ដង -40+2x។
2\left(x-20\right)+3x=10
ជំនួស x-20 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត 2y+3x=10។
2x-40+3x=10
គុណ 2 ដង x-20។
5x-40=10
បូក 2x ជាមួយ 3x។
5x=50
បូក 40 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=10
ចែកជ្រុងទាំងពីនឹង 5។
y=10-20
ជំនួស 10 សម្រាប់ x ក្នុង y=x-20។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-10
បូក -20 ជាមួយ 10។
y=-10,x=10
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2y-2x=-40,2y+3x=10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-40\\10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-2\\2&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-2\times 2\right)}&-\frac{-2}{2\times 3-\left(-2\times 2\right)}\\-\frac{2}{2\times 3-\left(-2\times 2\right)}&\frac{2}{2\times 3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-40\\10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-40\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\left(-40\right)+\frac{1}{5}\times 10\\-\frac{1}{5}\left(-40\right)+\frac{1}{5}\times 10\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
y=-10,x=10
ទាញយកធាតុម៉ាទ្រីស y និង x។
2y-2x=-40,2y+3x=10
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2y-2y-2x-3x=-40-10
ដក 2y+3x=10 ពី 2y-2x=-40 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-2x-3x=-40-10
បូក 2y ជាមួយ -2y។ ការលុបតួ 2y និង -2y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-5x=-40-10
បូក -2x ជាមួយ -3x។
-5x=-50
បូក -40 ជាមួយ -10។
x=10
ចែកជ្រុងទាំងពីនឹង -5។
2y+3\times 10=10
ជំនួស 10 សម្រាប់ x ក្នុង 2y+3x=10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
2y+30=10
គុណ 3 ដង 10។
2y=-20
ដក 30 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-10
ចែកជ្រុងទាំងពីនឹង 2។
y=-10,x=10
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។