រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x-y=5,x+y=3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x-y=5
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=y+5
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(y+5\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{1}{2}y+\frac{5}{2}
គុណ \frac{1}{2} ដង y+5។
\frac{1}{2}y+\frac{5}{2}+y=3
ជំនួស \frac{5+y}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+y=3។
\frac{3}{2}y+\frac{5}{2}=3
បូក \frac{y}{2} ជាមួយ y។
\frac{3}{2}y=\frac{1}{2}
ដក \frac{5}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{3}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{3}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{2}\times \frac{1}{3}+\frac{5}{2}
ជំនួស \frac{1}{3} សម្រាប់ y ក្នុង x=\frac{1}{2}y+\frac{5}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{1}{6}+\frac{5}{2}
គុណ \frac{1}{2} ដង \frac{1}{3} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{8}{3}
បូក \frac{5}{2} ជាមួយ \frac{1}{6} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{8}{3},y=\frac{1}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x-y=5,x+y=3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-1\\1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{2}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5+\frac{1}{3}\times 3\\-\frac{1}{3}\times 5+\frac{2}{3}\times 3\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\\frac{1}{3}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{8}{3},y=\frac{1}{3}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x-y=5,x+y=3
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x-y=5,2x+2y=2\times 3
ដើម្បីធ្វើឲ្យ 2x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
2x-y=5,2x+2y=6
ផ្ទៀងផ្ទាត់។
2x-2x-y-2y=5-6
ដក 2x+2y=6 ពី 2x-y=5 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-y-2y=5-6
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-3y=5-6
បូក -y ជាមួយ -2y។
-3y=-1
បូក 5 ជាមួយ -6។
y=\frac{1}{3}
ចែកជ្រុងទាំងពីនឹង -3។
x+\frac{1}{3}=3
ជំនួស \frac{1}{3} សម្រាប់ y ក្នុង x+y=3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{8}{3}
ដក \frac{1}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{8}{3},y=\frac{1}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។