រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x-5y=10,4x+y=15
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x-5y=10
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=5y+10
បូក 5y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(5y+10\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{5}{2}y+5
គុណ \frac{1}{2} ដង 10+5y។
4\left(\frac{5}{2}y+5\right)+y=15
ជំនួស 5+\frac{5y}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x+y=15។
10y+20+y=15
គុណ 4 ដង 5+\frac{5y}{2}។
11y+20=15
បូក 10y ជាមួយ y។
11y=-5
ដក 20 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{5}{11}
ចែកជ្រុងទាំងពីនឹង 11។
x=\frac{5}{2}\left(-\frac{5}{11}\right)+5
ជំនួស -\frac{5}{11} សម្រាប់ y ក្នុង x=\frac{5}{2}y+5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{25}{22}+5
គុណ \frac{5}{2} ដង -\frac{5}{11} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{85}{22}
បូក 5 ជាមួយ -\frac{25}{22}។
x=\frac{85}{22},y=-\frac{5}{11}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x-5y=10,4x+y=15
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\15\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-5\\4&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\times 4\right)}&-\frac{-5}{2-\left(-5\times 4\right)}\\-\frac{4}{2-\left(-5\times 4\right)}&\frac{2}{2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}10\\15\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{5}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}10\\15\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 10+\frac{5}{22}\times 15\\-\frac{2}{11}\times 10+\frac{1}{11}\times 15\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{85}{22}\\-\frac{5}{11}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{85}{22},y=-\frac{5}{11}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x-5y=10,4x+y=15
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4\times 2x+4\left(-5\right)y=4\times 10,2\times 4x+2y=2\times 15
ដើម្បីធ្វើឲ្យ 2x និង 4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
8x-20y=40,8x+2y=30
ផ្ទៀងផ្ទាត់។
8x-8x-20y-2y=40-30
ដក 8x+2y=30 ពី 8x-20y=40 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-20y-2y=40-30
បូក 8x ជាមួយ -8x។ ការលុបតួ 8x និង -8x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-22y=40-30
បូក -20y ជាមួយ -2y។
-22y=10
បូក 40 ជាមួយ -30។
y=-\frac{5}{11}
ចែកជ្រុងទាំងពីនឹង -22។
4x-\frac{5}{11}=15
ជំនួស -\frac{5}{11} សម្រាប់ y ក្នុង 4x+y=15។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
4x=\frac{170}{11}
បូក \frac{5}{11} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{85}{22}
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{85}{22},y=-\frac{5}{11}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។