រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x-4y=-2,3x+2y=3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x-4y=-2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=4y-2
បូក 4y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(4y-2\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=2y-1
គុណ \frac{1}{2} ដង 4y-2។
3\left(2y-1\right)+2y=3
ជំនួស 2y-1 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+2y=3។
6y-3+2y=3
គុណ 3 ដង 2y-1។
8y-3=3
បូក 6y ជាមួយ 2y។
8y=6
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{3}{4}
ចែកជ្រុងទាំងពីនឹង 8។
x=2\times \frac{3}{4}-1
ជំនួស \frac{3}{4} សម្រាប់ y ក្នុង x=2y-1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{3}{2}-1
គុណ 2 ដង \frac{3}{4}។
x=\frac{1}{2}
បូក -1 ជាមួយ \frac{3}{2}។
x=\frac{1}{2},y=\frac{3}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x-4y=-2,3x+2y=3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-4\\3&2\end{matrix}\right))\left(\begin{matrix}2&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\3&2\end{matrix}\right))\left(\begin{matrix}-2\\3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-4\\3&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\3&2\end{matrix}\right))\left(\begin{matrix}-2\\3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\3&2\end{matrix}\right))\left(\begin{matrix}-2\\3\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-4\times 3\right)}&-\frac{-4}{2\times 2-\left(-4\times 3\right)}\\-\frac{3}{2\times 2-\left(-4\times 3\right)}&\frac{2}{2\times 2-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-2\\3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{4}\\-\frac{3}{16}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}-2\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\left(-2\right)+\frac{1}{4}\times 3\\-\frac{3}{16}\left(-2\right)+\frac{1}{8}\times 3\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{3}{4}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{1}{2},y=\frac{3}{4}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x-4y=-2,3x+2y=3
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 2x+3\left(-4\right)y=3\left(-2\right),2\times 3x+2\times 2y=2\times 3
ដើម្បីធ្វើឲ្យ 2x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
6x-12y=-6,6x+4y=6
ផ្ទៀងផ្ទាត់។
6x-6x-12y-4y=-6-6
ដក 6x+4y=6 ពី 6x-12y=-6 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-12y-4y=-6-6
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-16y=-6-6
បូក -12y ជាមួយ -4y។
-16y=-12
បូក -6 ជាមួយ -6។
y=\frac{3}{4}
ចែកជ្រុងទាំងពីនឹង -16។
3x+2\times \frac{3}{4}=3
ជំនួស \frac{3}{4} សម្រាប់ y ក្នុង 3x+2y=3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x+\frac{3}{2}=3
គុណ 2 ដង \frac{3}{4}។
3x=\frac{3}{2}
ដក \frac{3}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{1}{2},y=\frac{3}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។