រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+y-17=0,17x-11y-8=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+y-17=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x+y=17
បូក 17 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2x=-y+17
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-y+17\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}y+\frac{17}{2}
គុណ \frac{1}{2} ដង -y+17។
17\left(-\frac{1}{2}y+\frac{17}{2}\right)-11y-8=0
ជំនួស \frac{-y+17}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 17x-11y-8=0។
-\frac{17}{2}y+\frac{289}{2}-11y-8=0
គុណ 17 ដង \frac{-y+17}{2}។
-\frac{39}{2}y+\frac{289}{2}-8=0
បូក -\frac{17y}{2} ជាមួយ -11y។
-\frac{39}{2}y+\frac{273}{2}=0
បូក \frac{289}{2} ជាមួយ -8។
-\frac{39}{2}y=-\frac{273}{2}
ដក \frac{273}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=7
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{39}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{1}{2}\times 7+\frac{17}{2}
ជំនួស 7 សម្រាប់ y ក្នុង x=-\frac{1}{2}y+\frac{17}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-7+17}{2}
គុណ -\frac{1}{2} ដង 7។
x=5
បូក \frac{17}{2} ជាមួយ -\frac{7}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=5,y=7
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+y-17=0,17x-11y-8=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&1\\17&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\8\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&1\\17&-11\end{matrix}\right))\left(\begin{matrix}2&1\\17&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\17&-11\end{matrix}\right))\left(\begin{matrix}17\\8\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&1\\17&-11\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\17&-11\end{matrix}\right))\left(\begin{matrix}17\\8\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\17&-11\end{matrix}\right))\left(\begin{matrix}17\\8\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{2\left(-11\right)-17}&-\frac{1}{2\left(-11\right)-17}\\-\frac{17}{2\left(-11\right)-17}&\frac{2}{2\left(-11\right)-17}\end{matrix}\right)\left(\begin{matrix}17\\8\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{39}&\frac{1}{39}\\\frac{17}{39}&-\frac{2}{39}\end{matrix}\right)\left(\begin{matrix}17\\8\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{39}\times 17+\frac{1}{39}\times 8\\\frac{17}{39}\times 17-\frac{2}{39}\times 8\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
x=5,y=7
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+y-17=0,17x-11y-8=0
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
17\times 2x+17y+17\left(-17\right)=0,2\times 17x+2\left(-11\right)y+2\left(-8\right)=0
ដើម្បីធ្វើឲ្យ 2x និង 17x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 17 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
34x+17y-289=0,34x-22y-16=0
ផ្ទៀងផ្ទាត់។
34x-34x+17y+22y-289+16=0
ដក 34x-22y-16=0 ពី 34x+17y-289=0 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
17y+22y-289+16=0
បូក 34x ជាមួយ -34x។ ការលុបតួ 34x និង -34x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
39y-289+16=0
បូក 17y ជាមួយ 22y។
39y-273=0
បូក -289 ជាមួយ 16។
39y=273
បូក 273 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=7
ចែកជ្រុងទាំងពីនឹង 39។
17x-11\times 7-8=0
ជំនួស 7 សម្រាប់ y ក្នុង 17x-11y-8=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
17x-77-8=0
គុណ -11 ដង 7។
17x-85=0
បូក -77 ជាមួយ -8។
17x=85
បូក 85 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=5
ចែកជ្រុងទាំងពីនឹង 17។
x=5,y=7
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។