រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+y=9,2x+3y=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+y=9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-y+9
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-y+9\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}y+\frac{9}{2}
គុណ \frac{1}{2} ដង -y+9។
2\left(-\frac{1}{2}y+\frac{9}{2}\right)+3y=2
ជំនួស \frac{-y+9}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+3y=2។
-y+9+3y=2
គុណ 2 ដង \frac{-y+9}{2}។
2y+9=2
បូក -y ជាមួយ 3y។
2y=-7
ដក 9 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{7}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}\left(-\frac{7}{2}\right)+\frac{9}{2}
ជំនួស -\frac{7}{2} សម្រាប់ y ក្នុង x=-\frac{1}{2}y+\frac{9}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{7}{4}+\frac{9}{2}
គុណ -\frac{1}{2} ដង -\frac{7}{2} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{25}{4}
បូក \frac{9}{2} ជាមួយ \frac{7}{4} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{25}{4},y=-\frac{7}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+y=9,2x+3y=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&1\\2&3\end{matrix}\right))\left(\begin{matrix}2&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&3\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&1\\2&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&3\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&3\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2}&-\frac{1}{2\times 3-2}\\-\frac{2}{2\times 3-2}&\frac{2}{2\times 3-2}\end{matrix}\right)\left(\begin{matrix}9\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}9\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 9-\frac{1}{4}\times 2\\-\frac{1}{2}\times 9+\frac{1}{2}\times 2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{4}\\-\frac{7}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{25}{4},y=-\frac{7}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+y=9,2x+3y=2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x-2x+y-3y=9-2
ដក 2x+3y=2 ពី 2x+y=9 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y-3y=9-2
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2y=9-2
បូក y ជាមួយ -3y។
-2y=7
បូក 9 ជាមួយ -2។
y=-\frac{7}{2}
ចែកជ្រុងទាំងពីនឹង -2។
2x+3\left(-\frac{7}{2}\right)=2
ជំនួស -\frac{7}{2} សម្រាប់ y ក្នុង 2x+3y=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x-\frac{21}{2}=2
គុណ 3 ដង -\frac{7}{2}។
2x=\frac{25}{2}
បូក \frac{21}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{25}{4}
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{25}{4},y=-\frac{7}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។