ដោះស្រាយសម្រាប់ x, y
x=\frac{1}{2}=0.5
y=2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
y-2x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
2x+y=3,-2x+y=1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+y=3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-y+3
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-y+3\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}y+\frac{3}{2}
គុណ \frac{1}{2} ដង -y+3។
-2\left(-\frac{1}{2}y+\frac{3}{2}\right)+y=1
ជំនួស \frac{-y+3}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -2x+y=1។
y-3+y=1
គុណ -2 ដង \frac{-y+3}{2}។
2y-3=1
បូក y ជាមួយ y។
2y=4
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}\times 2+\frac{3}{2}
ជំនួស 2 សម្រាប់ y ក្នុង x=-\frac{1}{2}y+\frac{3}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-1+\frac{3}{2}
គុណ -\frac{1}{2} ដង 2។
x=\frac{1}{2}
បូក \frac{3}{2} ជាមួយ -1។
x=\frac{1}{2},y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-2x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
2x+y=3,-2x+y=1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&1\\-2&1\end{matrix}\right))\left(\begin{matrix}2&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&1\\-2&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-2\right)}&-\frac{1}{2-\left(-2\right)}\\-\frac{-2}{2-\left(-2\right)}&\frac{2}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3-\frac{1}{4}\\\frac{1}{2}\times 3+\frac{1}{2}\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{1}{2},y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
y-2x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
2x+y=3,-2x+y=1
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x+2x+y-y=3-1
ដក -2x+y=1 ពី 2x+y=3 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
2x+2x=3-1
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
4x=3-1
បូក 2x ជាមួយ 2x។
4x=2
បូក 3 ជាមួយ -1។
x=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 4។
-2\times \frac{1}{2}+y=1
ជំនួស \frac{1}{2} សម្រាប់ x ក្នុង -2x+y=1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
-1+y=1
គុណ -2 ដង \frac{1}{2}។
y=2
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2},y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}