រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+5y=7,-3x+y=15
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+5y=7
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-5y+7
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-5y+7\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{5}{2}y+\frac{7}{2}
គុណ \frac{1}{2} ដង -5y+7។
-3\left(-\frac{5}{2}y+\frac{7}{2}\right)+y=15
ជំនួស \frac{-5y+7}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -3x+y=15។
\frac{15}{2}y-\frac{21}{2}+y=15
គុណ -3 ដង \frac{-5y+7}{2}។
\frac{17}{2}y-\frac{21}{2}=15
បូក \frac{15y}{2} ជាមួយ y។
\frac{17}{2}y=\frac{51}{2}
បូក \frac{21}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=3
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{17}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{5}{2}\times 3+\frac{7}{2}
ជំនួស 3 សម្រាប់ y ក្នុង x=-\frac{5}{2}y+\frac{7}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-15+7}{2}
គុណ -\frac{5}{2} ដង 3។
x=-4
បូក \frac{7}{2} ជាមួយ -\frac{15}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-4,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+5y=7,-3x+y=15
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&5\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\15\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&5\\-3&1\end{matrix}\right))\left(\begin{matrix}2&5\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-3&1\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&5\\-3&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-3&1\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-3&1\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5\left(-3\right)}&-\frac{5}{2-5\left(-3\right)}\\-\frac{-3}{2-5\left(-3\right)}&\frac{2}{2-5\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&-\frac{5}{17}\\\frac{3}{17}&\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 7-\frac{5}{17}\times 15\\\frac{3}{17}\times 7+\frac{2}{17}\times 15\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-4,y=3
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+5y=7,-3x+y=15
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-3\times 2x-3\times 5y=-3\times 7,2\left(-3\right)x+2y=2\times 15
ដើម្បីធ្វើឲ្យ 2x និង -3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
-6x-15y=-21,-6x+2y=30
ផ្ទៀងផ្ទាត់។
-6x+6x-15y-2y=-21-30
ដក -6x+2y=30 ពី -6x-15y=-21 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-15y-2y=-21-30
បូក -6x ជាមួយ 6x។ ការលុបតួ -6x និង 6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-17y=-21-30
បូក -15y ជាមួយ -2y។
-17y=-51
បូក -21 ជាមួយ -30។
y=3
ចែកជ្រុងទាំងពីនឹង -17។
-3x+3=15
ជំនួស 3 សម្រាប់ y ក្នុង -3x+y=15។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-3x=12
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-4
ចែកជ្រុងទាំងពីនឹង -3។
x=-4,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។