រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+5y=16,3x-7y=24
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+5y=16
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-5y+16
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-5y+16\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{5}{2}y+8
គុណ \frac{1}{2} ដង -5y+16។
3\left(-\frac{5}{2}y+8\right)-7y=24
ជំនួស -\frac{5y}{2}+8 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x-7y=24។
-\frac{15}{2}y+24-7y=24
គុណ 3 ដង -\frac{5y}{2}+8។
-\frac{29}{2}y+24=24
បូក -\frac{15y}{2} ជាមួយ -7y។
-\frac{29}{2}y=0
ដក 24 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=0
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{29}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=8
ជំនួស 0 សម្រាប់ y ក្នុង x=-\frac{5}{2}y+8។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=8,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+5y=16,3x-7y=24
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&5\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\24\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}2&5\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&5\\3&-7\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{2\left(-7\right)-5\times 3}&-\frac{5}{2\left(-7\right)-5\times 3}\\-\frac{3}{2\left(-7\right)-5\times 3}&\frac{2}{2\left(-7\right)-5\times 3}\end{matrix}\right)\left(\begin{matrix}16\\24\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}&\frac{5}{29}\\\frac{3}{29}&-\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}16\\24\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}\times 16+\frac{5}{29}\times 24\\\frac{3}{29}\times 16-\frac{2}{29}\times 24\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
x=8,y=0
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+5y=16,3x-7y=24
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 2x+3\times 5y=3\times 16,2\times 3x+2\left(-7\right)y=2\times 24
ដើម្បីធ្វើឲ្យ 2x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
6x+15y=48,6x-14y=48
ផ្ទៀងផ្ទាត់។
6x-6x+15y+14y=48-48
ដក 6x-14y=48 ពី 6x+15y=48 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
15y+14y=48-48
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
29y=48-48
បូក 15y ជាមួយ 14y។
29y=0
បូក 48 ជាមួយ -48។
y=0
ចែកជ្រុងទាំងពីនឹង 29។
3x=24
ជំនួស 0 សម្រាប់ y ក្នុង 3x-7y=24។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=8
ចែកជ្រុងទាំងពីនឹង 3។
x=8,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។