រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+4y=12,3x+y=6
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+4y=12
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-4y+12
ដក 4y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-4y+12\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-2y+6
គុណ \frac{1}{2} ដង -4y+12។
3\left(-2y+6\right)+y=6
ជំនួស -2y+6 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+y=6។
-6y+18+y=6
គុណ 3 ដង -2y+6។
-5y+18=6
បូក -6y ជាមួយ y។
-5y=-12
ដក 18 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{12}{5}
ចែកជ្រុងទាំងពីនឹង -5។
x=-2\times \frac{12}{5}+6
ជំនួស \frac{12}{5} សម្រាប់ y ក្នុង x=-2y+6។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{24}{5}+6
គុណ -2 ដង \frac{12}{5}។
x=\frac{6}{5}
បូក 6 ជាមួយ -\frac{24}{5}។
x=\frac{6}{5},y=\frac{12}{5}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+4y=12,3x+y=6
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\6\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}2&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&4\\3&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4\times 3}&-\frac{4}{2-4\times 3}\\-\frac{3}{2-4\times 3}&\frac{2}{2-4\times 3}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{2}{5}\\\frac{3}{10}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 12+\frac{2}{5}\times 6\\\frac{3}{10}\times 12-\frac{1}{5}\times 6\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\\frac{12}{5}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{6}{5},y=\frac{12}{5}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+4y=12,3x+y=6
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 2x+3\times 4y=3\times 12,2\times 3x+2y=2\times 6
ដើម្បីធ្វើឲ្យ 2x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
6x+12y=36,6x+2y=12
ផ្ទៀងផ្ទាត់។
6x-6x+12y-2y=36-12
ដក 6x+2y=12 ពី 6x+12y=36 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
12y-2y=36-12
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
10y=36-12
បូក 12y ជាមួយ -2y។
10y=24
បូក 36 ជាមួយ -12។
y=\frac{12}{5}
ចែកជ្រុងទាំងពីនឹង 10។
3x+\frac{12}{5}=6
ជំនួស \frac{12}{5} សម្រាប់ y ក្នុង 3x+y=6។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x=\frac{18}{5}
ដក \frac{12}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{6}{5}
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{6}{5},y=\frac{12}{5}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។