ដោះស្រាយសម្រាប់ x, y
x=-1
y=3
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
2x-6=-5-y
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង x-3។
2x-6+y=-5
បន្ថែម y ទៅជ្រុងទាំងពីរ។
2x+y=-5+6
បន្ថែម 6 ទៅជ្រុងទាំងពីរ។
2x+y=1
បូក -5 និង 6 ដើម្បីបាន 1។
x-3y+3=-7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ -3 នឹង y-1។
x-3y=-7-3
ដក 3 ពីជ្រុងទាំងពីរ។
x-3y=-10
ដក 3 ពី -7 ដើម្បីបាន -10។
2x+y=1,x-3y=-10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+y=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-y+1
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-y+1\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}y+\frac{1}{2}
គុណ \frac{1}{2} ដង -y+1។
-\frac{1}{2}y+\frac{1}{2}-3y=-10
ជំនួស \frac{-y+1}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-3y=-10។
-\frac{7}{2}y+\frac{1}{2}=-10
បូក -\frac{y}{2} ជាមួយ -3y។
-\frac{7}{2}y=-\frac{21}{2}
ដក \frac{1}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=3
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{7}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{1}{2}\times 3+\frac{1}{2}
ជំនួស 3 សម្រាប់ y ក្នុង x=-\frac{1}{2}y+\frac{1}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-3+1}{2}
គុណ -\frac{1}{2} ដង 3។
x=-1
បូក \frac{1}{2} ជាមួយ -\frac{3}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-1,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x-6=-5-y
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង x-3។
2x-6+y=-5
បន្ថែម y ទៅជ្រុងទាំងពីរ។
2x+y=-5+6
បន្ថែម 6 ទៅជ្រុងទាំងពីរ។
2x+y=1
បូក -5 និង 6 ដើម្បីបាន 1។
x-3y+3=-7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ -3 នឹង y-1។
x-3y=-7-3
ដក 3 ពីជ្រុងទាំងពីរ។
x-3y=-10
ដក 3 ពី -7 ដើម្បីបាន -10។
2x+y=1,x-3y=-10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&1\\1&-3\end{matrix}\right))\left(\begin{matrix}2&1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&1\\1&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-1}&-\frac{1}{2\left(-3\right)-1}\\-\frac{1}{2\left(-3\right)-1}&\frac{2}{2\left(-3\right)-1}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{1}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}+\frac{1}{7}\left(-10\right)\\\frac{1}{7}-\frac{2}{7}\left(-10\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=3
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x-6=-5-y
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង x-3។
2x-6+y=-5
បន្ថែម y ទៅជ្រុងទាំងពីរ។
2x+y=-5+6
បន្ថែម 6 ទៅជ្រុងទាំងពីរ។
2x+y=1
បូក -5 និង 6 ដើម្បីបាន 1។
x-3y+3=-7
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ -3 នឹង y-1។
x-3y=-7-3
ដក 3 ពីជ្រុងទាំងពីរ។
x-3y=-10
ដក 3 ពី -7 ដើម្បីបាន -10។
2x+y=1,x-3y=-10
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x+y=1,2x+2\left(-3\right)y=2\left(-10\right)
ដើម្បីធ្វើឲ្យ 2x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
2x+y=1,2x-6y=-20
ផ្ទៀងផ្ទាត់។
2x-2x+y+6y=1+20
ដក 2x-6y=-20 ពី 2x+y=1 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y+6y=1+20
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
7y=1+20
បូក y ជាមួយ 6y។
7y=21
បូក 1 ជាមួយ 20។
y=3
ចែកជ្រុងទាំងពីនឹង 7។
x-3\times 3=-10
ជំនួស 3 សម្រាប់ y ក្នុង x-3y=-10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x-9=-10
គុណ -3 ដង 3។
x=-1
បូក 9 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-1,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}