រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

15x+15y=15,17x+18y=19
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
15x+15y=15
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
15x=-15y+15
ដក 15y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{15}\left(-15y+15\right)
ចែកជ្រុងទាំងពីនឹង 15។
x=-y+1
គុណ \frac{1}{15} ដង -15y+15។
17\left(-y+1\right)+18y=19
ជំនួស -y+1 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 17x+18y=19។
-17y+17+18y=19
គុណ 17 ដង -y+1។
y+17=19
បូក -17y ជាមួយ 18y។
y=2
ដក 17 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-2+1
ជំនួស 2 សម្រាប់ y ក្នុង x=-y+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-1
បូក 1 ជាមួយ -2។
x=-1,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
15x+15y=15,17x+18y=19
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}15&15\\17&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\19\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}15&15\\17&18\end{matrix}\right))\left(\begin{matrix}15&15\\17&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&15\\17&18\end{matrix}\right))\left(\begin{matrix}15\\19\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}15&15\\17&18\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&15\\17&18\end{matrix}\right))\left(\begin{matrix}15\\19\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&15\\17&18\end{matrix}\right))\left(\begin{matrix}15\\19\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{15\times 18-15\times 17}&-\frac{15}{15\times 18-15\times 17}\\-\frac{17}{15\times 18-15\times 17}&\frac{15}{15\times 18-15\times 17}\end{matrix}\right)\left(\begin{matrix}15\\19\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}&-1\\-\frac{17}{15}&1\end{matrix}\right)\left(\begin{matrix}15\\19\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\times 15-19\\-\frac{17}{15}\times 15+19\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
15x+15y=15,17x+18y=19
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
17\times 15x+17\times 15y=17\times 15,15\times 17x+15\times 18y=15\times 19
ដើម្បីធ្វើឲ្យ 15x និង 17x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 17 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 15។
255x+255y=255,255x+270y=285
ផ្ទៀងផ្ទាត់។
255x-255x+255y-270y=255-285
ដក 255x+270y=285 ពី 255x+255y=255 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
255y-270y=255-285
បូក 255x ជាមួយ -255x។ ការលុបតួ 255x និង -255x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-15y=255-285
បូក 255y ជាមួយ -270y។
-15y=-30
បូក 255 ជាមួយ -285។
y=2
ចែកជ្រុងទាំងពីនឹង -15។
17x+18\times 2=19
ជំនួស 2 សម្រាប់ y ក្នុង 17x+18y=19។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
17x+36=19
គុណ 18 ដង 2។
17x=-17
ដក 36 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង 17។
x=-1,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។