រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

12x-5y=40,12x-11y=88
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
12x-5y=40
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
12x=5y+40
បូក 5y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{12}\left(5y+40\right)
ចែកជ្រុងទាំងពីនឹង 12។
x=\frac{5}{12}y+\frac{10}{3}
គុណ \frac{1}{12} ដង 40+5y។
12\left(\frac{5}{12}y+\frac{10}{3}\right)-11y=88
ជំនួស \frac{10}{3}+\frac{5y}{12} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 12x-11y=88។
5y+40-11y=88
គុណ 12 ដង \frac{10}{3}+\frac{5y}{12}។
-6y+40=88
បូក 5y ជាមួយ -11y។
-6y=48
ដក 40 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-8
ចែកជ្រុងទាំងពីនឹង -6។
x=\frac{5}{12}\left(-8\right)+\frac{10}{3}
ជំនួស -8 សម្រាប់ y ក្នុង x=\frac{5}{12}y+\frac{10}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-10+10}{3}
គុណ \frac{5}{12} ដង -8។
x=0
បូក \frac{10}{3} ជាមួយ -\frac{10}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=0,y=-8
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
12x-5y=40,12x-11y=88
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\88\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}12&-5\\12&-11\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{12\left(-11\right)-\left(-5\times 12\right)}&-\frac{-5}{12\left(-11\right)-\left(-5\times 12\right)}\\-\frac{12}{12\left(-11\right)-\left(-5\times 12\right)}&\frac{12}{12\left(-11\right)-\left(-5\times 12\right)}\end{matrix}\right)\left(\begin{matrix}40\\88\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{72}&-\frac{5}{72}\\\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}40\\88\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{72}\times 40-\frac{5}{72}\times 88\\\frac{1}{6}\times 40-\frac{1}{6}\times 88\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-8\end{matrix}\right)
ធ្វើនព្វន្ត។
x=0,y=-8
ទាញយកធាតុម៉ាទ្រីស x និង y។
12x-5y=40,12x-11y=88
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
12x-12x-5y+11y=40-88
ដក 12x-11y=88 ពី 12x-5y=40 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-5y+11y=40-88
បូក 12x ជាមួយ -12x។ ការលុបតួ 12x និង -12x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
6y=40-88
បូក -5y ជាមួយ 11y។
6y=-48
បូក 40 ជាមួយ -88។
y=-8
ចែកជ្រុងទាំងពីនឹង 6។
12x-11\left(-8\right)=88
ជំនួស -8 សម្រាប់ y ក្នុង 12x-11y=88។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
12x+88=88
គុណ -11 ដង -8។
12x=0
ដក 88 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=0
ចែកជ្រុងទាំងពីនឹង 12។
x=0,y=-8
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។