រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-x-y=-2,9x-2y=-15
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-x-y=-2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-x=y-2
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\left(y-2\right)
ចែកជ្រុងទាំងពីនឹង -1។
x=-y+2
គុណ -1 ដង y-2។
9\left(-y+2\right)-2y=-15
ជំនួស -y+2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 9x-2y=-15។
-9y+18-2y=-15
គុណ 9 ដង -y+2។
-11y+18=-15
បូក -9y ជាមួយ -2y។
-11y=-33
ដក 18 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=3
ចែកជ្រុងទាំងពីនឹង -11។
x=-3+2
ជំនួស 3 សម្រាប់ y ក្នុង x=-y+2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-1
បូក 2 ជាមួយ -3។
x=-1,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-x-y=-2,9x-2y=-15
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-15\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-\left(-9\right)}&-\frac{-1}{-\left(-2\right)-\left(-9\right)}\\-\frac{9}{-\left(-2\right)-\left(-9\right)}&-\frac{1}{-\left(-2\right)-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-15\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}&\frac{1}{11}\\-\frac{9}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}-2\\-15\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}\left(-2\right)+\frac{1}{11}\left(-15\right)\\-\frac{9}{11}\left(-2\right)-\frac{1}{11}\left(-15\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=3
ទាញយកធាតុម៉ាទ្រីស x និង y។
-x-y=-2,9x-2y=-15
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
9\left(-1\right)x+9\left(-1\right)y=9\left(-2\right),-9x-\left(-2y\right)=-\left(-15\right)
ដើម្បីធ្វើឲ្យ -x និង 9x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 9 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -1។
-9x-9y=-18,-9x+2y=15
ផ្ទៀងផ្ទាត់។
-9x+9x-9y-2y=-18-15
ដក -9x+2y=15 ពី -9x-9y=-18 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-9y-2y=-18-15
បូក -9x ជាមួយ 9x។ ការលុបតួ -9x និង 9x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-11y=-18-15
បូក -9y ជាមួយ -2y។
-11y=-33
បូក -18 ជាមួយ -15។
y=3
ចែកជ្រុងទាំងពីនឹង -11។
9x-2\times 3=-15
ជំនួស 3 សម្រាប់ y ក្នុង 9x-2y=-15។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
9x-6=-15
គុណ -2 ដង 3។
9x=-9
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង 9។
x=-1,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។