រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-x-3y=12,-5x-9y=18
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-x-3y=12
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-x=3y+12
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\left(3y+12\right)
ចែកជ្រុងទាំងពីនឹង -1។
x=-3y-12
គុណ -1 ដង 12+3y។
-5\left(-3y-12\right)-9y=18
ជំនួស -3y-12 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -5x-9y=18។
15y+60-9y=18
គុណ -5 ដង -3y-12។
6y+60=18
បូក 15y ជាមួយ -9y។
6y=-42
ដក 60 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-7
ចែកជ្រុងទាំងពីនឹង 6។
x=-3\left(-7\right)-12
ជំនួស -7 សម្រាប់ y ក្នុង x=-3y-12។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=21-12
គុណ -3 ដង -7។
x=9
បូក -12 ជាមួយ 21។
x=9,y=-7
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-x-3y=12,-5x-9y=18
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\18\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-\left(-9\right)-\left(-3\left(-5\right)\right)}&-\frac{-3}{-\left(-9\right)-\left(-3\left(-5\right)\right)}\\-\frac{-5}{-\left(-9\right)-\left(-3\left(-5\right)\right)}&-\frac{1}{-\left(-9\right)-\left(-3\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}12\\18\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\-\frac{5}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}12\\18\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 12-\frac{1}{2}\times 18\\-\frac{5}{6}\times 12+\frac{1}{6}\times 18\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-7\end{matrix}\right)
ធ្វើនព្វន្ត។
x=9,y=-7
ទាញយកធាតុម៉ាទ្រីស x និង y។
-x-3y=12,-5x-9y=18
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-5\left(-1\right)x-5\left(-3\right)y=-5\times 12,-\left(-5\right)x-\left(-9y\right)=-18
ដើម្បីធ្វើឲ្យ -x និង -5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -1។
5x+15y=-60,5x+9y=-18
ផ្ទៀងផ្ទាត់។
5x-5x+15y-9y=-60+18
ដក 5x+9y=-18 ពី 5x+15y=-60 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
15y-9y=-60+18
បូក 5x ជាមួយ -5x។ ការលុបតួ 5x និង -5x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
6y=-60+18
បូក 15y ជាមួយ -9y។
6y=-42
បូក -60 ជាមួយ 18។
y=-7
ចែកជ្រុងទាំងពីនឹង 6។
-5x-9\left(-7\right)=18
ជំនួស -7 សម្រាប់ y ក្នុង -5x-9y=18។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-5x+63=18
គុណ -9 ដង -7។
-5x=-45
ដក 63 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=9
ចែកជ្រុងទាំងពីនឹង -5។
x=9,y=-7
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។