ដោះស្រាយសម្រាប់ x, y
x=8
y=-1
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-x+y=-9,2x+2y=14
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-x+y=-9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-x=-y-9
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\left(-y-9\right)
ចែកជ្រុងទាំងពីនឹង -1។
x=y+9
គុណ -1 ដង -y-9។
2\left(y+9\right)+2y=14
ជំនួស y+9 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+2y=14។
2y+18+2y=14
គុណ 2 ដង y+9។
4y+18=14
បូក 2y ជាមួយ 2y។
4y=-4
ដក 18 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែកជ្រុងទាំងពីនឹង 4។
x=-1+9
ជំនួស -1 សម្រាប់ y ក្នុង x=y+9។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=8
បូក 9 ជាមួយ -1។
x=8,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-x+y=-9,2x+2y=14
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-1&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\14\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-1&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-1&1\\2&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-2}&-\frac{1}{-2-2}\\-\frac{2}{-2-2}&-\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}-9\\14\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-9\\14\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-9\right)+\frac{1}{4}\times 14\\\frac{1}{2}\left(-9\right)+\frac{1}{4}\times 14\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=8,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
-x+y=-9,2x+2y=14
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2\left(-1\right)x+2y=2\left(-9\right),-2x-2y=-14
ដើម្បីធ្វើឲ្យ -x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -1។
-2x+2y=-18,-2x-2y=-14
ផ្ទៀងផ្ទាត់។
-2x+2x+2y+2y=-18+14
ដក -2x-2y=-14 ពី -2x+2y=-18 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
2y+2y=-18+14
បូក -2x ជាមួយ 2x។ ការលុបតួ -2x និង 2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
4y=-18+14
បូក 2y ជាមួយ 2y។
4y=-4
បូក -18 ជាមួយ 14។
y=-1
ចែកជ្រុងទាំងពីនឹង 4។
2x+2\left(-1\right)=14
ជំនួស -1 សម្រាប់ y ក្នុង 2x+2y=14។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x-2=14
គុណ 2 ដង -1។
2x=16
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=8
ចែកជ្រុងទាំងពីនឹង 2។
x=8,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}