រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-x+5y=-1,x+2y=5
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-x+5y=-1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-x=-5y-1
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\left(-5y-1\right)
ចែកជ្រុងទាំងពីនឹង -1។
x=5y+1
គុណ -1 ដង -5y-1។
5y+1+2y=5
ជំនួស 5y+1 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+2y=5។
7y+1=5
បូក 5y ជាមួយ 2y។
7y=4
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{4}{7}
ចែកជ្រុងទាំងពីនឹង 7។
x=5\times \frac{4}{7}+1
ជំនួស \frac{4}{7} សម្រាប់ y ក្នុង x=5y+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{20}{7}+1
គុណ 5 ដង \frac{4}{7}។
x=\frac{27}{7}
បូក 1 ជាមួយ \frac{20}{7}។
x=\frac{27}{7},y=\frac{4}{7}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-x+5y=-1,x+2y=5
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-1&5\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1&5\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-1&5\\1&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-5}&-\frac{5}{-2-5}\\-\frac{1}{-2-5}&-\frac{1}{-2-5}\end{matrix}\right)\left(\begin{matrix}-1\\5\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&\frac{5}{7}\\\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-1\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\left(-1\right)+\frac{5}{7}\times 5\\\frac{1}{7}\left(-1\right)+\frac{1}{7}\times 5\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{7}\\\frac{4}{7}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{27}{7},y=\frac{4}{7}
ទាញយកធាតុម៉ាទ្រីស x និង y។
-x+5y=-1,x+2y=5
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-x+5y=-1,-x-2y=-5
ដើម្បីធ្វើឲ្យ -x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -1។
-x+x+5y+2y=-1+5
ដក -x-2y=-5 ពី -x+5y=-1 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
5y+2y=-1+5
បូក -x ជាមួយ x។ ការលុបតួ -x និង x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
7y=-1+5
បូក 5y ជាមួយ 2y។
7y=4
បូក -1 ជាមួយ 5។
y=\frac{4}{7}
ចែកជ្រុងទាំងពីនឹង 7។
x+2\times \frac{4}{7}=5
ជំនួស \frac{4}{7} សម្រាប់ y ក្នុង x+2y=5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x+\frac{8}{7}=5
គុណ 2 ដង \frac{4}{7}។
x=\frac{27}{7}
ដក \frac{8}{7} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{27}{7},y=\frac{4}{7}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។