រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-9x-y=-14,-x-5y=18
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-9x-y=-14
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-9x=y-14
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{9}\left(y-14\right)
ចែកជ្រុងទាំងពីនឹង -9។
x=-\frac{1}{9}y+\frac{14}{9}
គុណ -\frac{1}{9} ដង y-14។
-\left(-\frac{1}{9}y+\frac{14}{9}\right)-5y=18
ជំនួស \frac{-y+14}{9} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -x-5y=18។
\frac{1}{9}y-\frac{14}{9}-5y=18
គុណ -1 ដង \frac{-y+14}{9}។
-\frac{44}{9}y-\frac{14}{9}=18
បូក \frac{y}{9} ជាមួយ -5y។
-\frac{44}{9}y=\frac{176}{9}
បូក \frac{14}{9} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-4
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{44}{9} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{1}{9}\left(-4\right)+\frac{14}{9}
ជំនួស -4 សម្រាប់ y ក្នុង x=-\frac{1}{9}y+\frac{14}{9}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{4+14}{9}
គុណ -\frac{1}{9} ដង -4។
x=2
បូក \frac{14}{9} ជាមួយ \frac{4}{9} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=2,y=-4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-9x-y=-14,-x-5y=18
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\18\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-9\left(-5\right)-\left(-\left(-1\right)\right)}&-\frac{-1}{-9\left(-5\right)-\left(-\left(-1\right)\right)}\\-\frac{-1}{-9\left(-5\right)-\left(-\left(-1\right)\right)}&-\frac{9}{-9\left(-5\right)-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-14\\18\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{44}&\frac{1}{44}\\\frac{1}{44}&-\frac{9}{44}\end{matrix}\right)\left(\begin{matrix}-14\\18\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{44}\left(-14\right)+\frac{1}{44}\times 18\\\frac{1}{44}\left(-14\right)-\frac{9}{44}\times 18\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=-4
ទាញយកធាតុម៉ាទ្រីស x និង y។
-9x-y=-14,-x-5y=18
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-\left(-9\right)x-\left(-y\right)=-\left(-14\right),-9\left(-1\right)x-9\left(-5\right)y=-9\times 18
ដើម្បីធ្វើឲ្យ -9x និង -x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -9។
9x+y=14,9x+45y=-162
ផ្ទៀងផ្ទាត់។
9x-9x+y-45y=14+162
ដក 9x+45y=-162 ពី 9x+y=14 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y-45y=14+162
បូក 9x ជាមួយ -9x។ ការលុបតួ 9x និង -9x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-44y=14+162
បូក y ជាមួយ -45y។
-44y=176
បូក 14 ជាមួយ 162។
y=-4
ចែកជ្រុងទាំងពីនឹង -44។
-x-5\left(-4\right)=18
ជំនួស -4 សម្រាប់ y ក្នុង -x-5y=18។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-x+20=18
គុណ -5 ដង -4។
-x=-2
ដក 20 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង -1។
x=2,y=-4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។