រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-8x-6y=-10,x-y=17
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-8x-6y=-10
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-8x=6y-10
បូក 6y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{8}\left(6y-10\right)
ចែកជ្រុងទាំងពីនឹង -8។
x=-\frac{3}{4}y+\frac{5}{4}
គុណ -\frac{1}{8} ដង 6y-10។
-\frac{3}{4}y+\frac{5}{4}-y=17
ជំនួស \frac{-3y+5}{4} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-y=17។
-\frac{7}{4}y+\frac{5}{4}=17
បូក -\frac{3y}{4} ជាមួយ -y។
-\frac{7}{4}y=\frac{63}{4}
ដក \frac{5}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-9
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{7}{4} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{3}{4}\left(-9\right)+\frac{5}{4}
ជំនួស -9 សម្រាប់ y ក្នុង x=-\frac{3}{4}y+\frac{5}{4}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{27+5}{4}
គុណ -\frac{3}{4} ដង -9។
x=8
បូក \frac{5}{4} ជាមួយ \frac{27}{4} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=8,y=-9
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-8x-6y=-10,x-y=17
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\17\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-8\left(-1\right)-\left(-6\right)}&-\frac{-6}{-8\left(-1\right)-\left(-6\right)}\\-\frac{1}{-8\left(-1\right)-\left(-6\right)}&-\frac{8}{-8\left(-1\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-10\\17\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{3}{7}\\-\frac{1}{14}&-\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}-10\\17\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\left(-10\right)+\frac{3}{7}\times 17\\-\frac{1}{14}\left(-10\right)-\frac{4}{7}\times 17\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-9\end{matrix}\right)
ធ្វើនព្វន្ត។
x=8,y=-9
ទាញយកធាតុម៉ាទ្រីស x និង y។
-8x-6y=-10,x-y=17
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-8x-6y=-10,-8x-8\left(-1\right)y=-8\times 17
ដើម្បីធ្វើឲ្យ -8x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -8។
-8x-6y=-10,-8x+8y=-136
ផ្ទៀងផ្ទាត់។
-8x+8x-6y-8y=-10+136
ដក -8x+8y=-136 ពី -8x-6y=-10 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-6y-8y=-10+136
បូក -8x ជាមួយ 8x។ ការលុបតួ -8x និង 8x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-14y=-10+136
បូក -6y ជាមួយ -8y។
-14y=126
បូក -10 ជាមួយ 136។
y=-9
ចែកជ្រុងទាំងពីនឹង -14។
x-\left(-9\right)=17
ជំនួស -9 សម្រាប់ y ក្នុង x-y=17។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=8
ដក 9 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=8,y=-9
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។