ដោះស្រាយសម្រាប់ x, y
x=9
y=9
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-8x+7y=-9,-9x+7y=-18
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-8x+7y=-9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-8x=-7y-9
ដក 7y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{8}\left(-7y-9\right)
ចែកជ្រុងទាំងពីនឹង -8។
x=\frac{7}{8}y+\frac{9}{8}
គុណ -\frac{1}{8} ដង -7y-9។
-9\left(\frac{7}{8}y+\frac{9}{8}\right)+7y=-18
ជំនួស \frac{7y+9}{8} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -9x+7y=-18។
-\frac{63}{8}y-\frac{81}{8}+7y=-18
គុណ -9 ដង \frac{7y+9}{8}។
-\frac{7}{8}y-\frac{81}{8}=-18
បូក -\frac{63y}{8} ជាមួយ 7y។
-\frac{7}{8}y=-\frac{63}{8}
បូក \frac{81}{8} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=9
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{7}{8} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{7}{8}\times 9+\frac{9}{8}
ជំនួស 9 សម្រាប់ y ក្នុង x=\frac{7}{8}y+\frac{9}{8}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{63+9}{8}
គុណ \frac{7}{8} ដង 9។
x=9
បូក \frac{9}{8} ជាមួយ \frac{63}{8} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=9,y=9
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-8x+7y=-9,-9x+7y=-18
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-18\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-8&7\\-9&7\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-8\times 7-7\left(-9\right)}&-\frac{7}{-8\times 7-7\left(-9\right)}\\-\frac{-9}{-8\times 7-7\left(-9\right)}&-\frac{8}{-8\times 7-7\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-18\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\\frac{9}{7}&-\frac{8}{7}\end{matrix}\right)\left(\begin{matrix}-9\\-18\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9-\left(-18\right)\\\frac{9}{7}\left(-9\right)-\frac{8}{7}\left(-18\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\9\end{matrix}\right)
ធ្វើនព្វន្ត។
x=9,y=9
ទាញយកធាតុម៉ាទ្រីស x និង y។
-8x+7y=-9,-9x+7y=-18
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-8x+9x+7y-7y=-9+18
ដក -9x+7y=-18 ពី -8x+7y=-9 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-8x+9x=-9+18
បូក 7y ជាមួយ -7y។ ការលុបតួ 7y និង -7y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
x=-9+18
បូក -8x ជាមួយ 9x។
x=9
បូក -9 ជាមួយ 18។
-9\times 9+7y=-18
ជំនួស 9 សម្រាប់ x ក្នុង -9x+7y=-18។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
-81+7y=-18
គុណ -9 ដង 9។
7y=63
បូក 81 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=9
ចែកជ្រុងទាំងពីនឹង 7។
x=9,y=9
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}