រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-5x+13y=-7,5x+4y=24
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-5x+13y=-7
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-5x=-13y-7
ដក 13y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{5}\left(-13y-7\right)
ចែកជ្រុងទាំងពីនឹង -5។
x=\frac{13}{5}y+\frac{7}{5}
គុណ -\frac{1}{5} ដង -13y-7។
5\left(\frac{13}{5}y+\frac{7}{5}\right)+4y=24
ជំនួស \frac{13y+7}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x+4y=24។
13y+7+4y=24
គុណ 5 ដង \frac{13y+7}{5}។
17y+7=24
បូក 13y ជាមួយ 4y។
17y=17
ដក 7 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=1
ចែកជ្រុងទាំងពីនឹង 17។
x=\frac{13+7}{5}
ជំនួស 1 សម្រាប់ y ក្នុង x=\frac{13}{5}y+\frac{7}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=4
បូក \frac{7}{5} ជាមួយ \frac{13}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=4,y=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-5x+13y=-7,5x+4y=24
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-5&13\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\24\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-5&13\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-5&13\\5&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-5\times 4-13\times 5}&-\frac{13}{-5\times 4-13\times 5}\\-\frac{5}{-5\times 4-13\times 5}&-\frac{5}{-5\times 4-13\times 5}\end{matrix}\right)\left(\begin{matrix}-7\\24\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{85}&\frac{13}{85}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-7\\24\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{85}\left(-7\right)+\frac{13}{85}\times 24\\\frac{1}{17}\left(-7\right)+\frac{1}{17}\times 24\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=4,y=1
ទាញយកធាតុម៉ាទ្រីស x និង y។
-5x+13y=-7,5x+4y=24
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5\left(-5\right)x+5\times 13y=5\left(-7\right),-5\times 5x-5\times 4y=-5\times 24
ដើម្បីធ្វើឲ្យ -5x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -5។
-25x+65y=-35,-25x-20y=-120
ផ្ទៀងផ្ទាត់។
-25x+25x+65y+20y=-35+120
ដក -25x-20y=-120 ពី -25x+65y=-35 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
65y+20y=-35+120
បូក -25x ជាមួយ 25x។ ការលុបតួ -25x និង 25x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
85y=-35+120
បូក 65y ជាមួយ 20y។
85y=85
បូក -35 ជាមួយ 120។
y=1
ចែកជ្រុងទាំងពីនឹង 85។
5x+4=24
ជំនួស 1 សម្រាប់ y ក្នុង 5x+4y=24។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x=20
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=4
ចែកជ្រុងទាំងពីនឹង 5។
x=4,y=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។