ដោះស្រាយសម្រាប់ x, y
x=10
y=-6
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-4x-10y=20,8x+10y=20
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-4x-10y=20
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-4x=10y+20
បូក 10y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{4}\left(10y+20\right)
ចែកជ្រុងទាំងពីនឹង -4។
x=-\frac{5}{2}y-5
គុណ -\frac{1}{4} ដង 20+10y។
8\left(-\frac{5}{2}y-5\right)+10y=20
ជំនួស -\frac{5y}{2}-5 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 8x+10y=20។
-20y-40+10y=20
គុណ 8 ដង -\frac{5y}{2}-5។
-10y-40=20
បូក -20y ជាមួយ 10y។
-10y=60
បូក 40 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-6
ចែកជ្រុងទាំងពីនឹង -10។
x=-\frac{5}{2}\left(-6\right)-5
ជំនួស -6 សម្រាប់ y ក្នុង x=-\frac{5}{2}y-5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=15-5
គុណ -\frac{5}{2} ដង -6។
x=10
បូក -5 ជាមួយ 15។
x=10,y=-6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-4x-10y=20,8x+10y=20
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{-4\times 10-\left(-10\times 8\right)}&-\frac{-10}{-4\times 10-\left(-10\times 8\right)}\\-\frac{8}{-4\times 10-\left(-10\times 8\right)}&-\frac{4}{-4\times 10-\left(-10\times 8\right)}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{5}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 20+\frac{1}{4}\times 20\\-\frac{1}{5}\times 20-\frac{1}{10}\times 20\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-6\end{matrix}\right)
ធ្វើនព្វន្ត។
x=10,y=-6
ទាញយកធាតុម៉ាទ្រីស x និង y។
-4x-10y=20,8x+10y=20
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
8\left(-4\right)x+8\left(-10\right)y=8\times 20,-4\times 8x-4\times 10y=-4\times 20
ដើម្បីធ្វើឲ្យ -4x និង 8x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 8 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -4។
-32x-80y=160,-32x-40y=-80
ផ្ទៀងផ្ទាត់។
-32x+32x-80y+40y=160+80
ដក -32x-40y=-80 ពី -32x-80y=160 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-80y+40y=160+80
បូក -32x ជាមួយ 32x។ ការលុបតួ -32x និង 32x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-40y=160+80
បូក -80y ជាមួយ 40y។
-40y=240
បូក 160 ជាមួយ 80។
y=-6
ចែកជ្រុងទាំងពីនឹង -40។
8x+10\left(-6\right)=20
ជំនួស -6 សម្រាប់ y ក្នុង 8x+10y=20។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
8x-60=20
គុណ 10 ដង -6។
8x=80
បូក 60 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=10
ចែកជ្រុងទាំងពីនឹង 8។
x=10,y=-6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}