រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-4x+9y=9,x-3y=-6
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-4x+9y=9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-4x=-9y+9
ដក 9y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{4}\left(-9y+9\right)
ចែកជ្រុងទាំងពីនឹង -4។
x=\frac{9}{4}y-\frac{9}{4}
គុណ -\frac{1}{4} ដង -9y+9។
\frac{9}{4}y-\frac{9}{4}-3y=-6
ជំនួស \frac{-9+9y}{4} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-3y=-6។
-\frac{3}{4}y-\frac{9}{4}=-6
បូក \frac{9y}{4} ជាមួយ -3y។
-\frac{3}{4}y=-\frac{15}{4}
បូក \frac{9}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=5
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{3}{4} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{9}{4}\times 5-\frac{9}{4}
ជំនួស 5 សម្រាប់ y ក្នុង x=\frac{9}{4}y-\frac{9}{4}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{45-9}{4}
គុណ \frac{9}{4} ដង 5។
x=9
បូក -\frac{9}{4} ជាមួយ \frac{45}{4} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=9,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-4x+9y=9,x-3y=-6
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-6\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-4\left(-3\right)-9}&-\frac{9}{-4\left(-3\right)-9}\\-\frac{1}{-4\left(-3\right)-9}&-\frac{4}{-4\left(-3\right)-9}\end{matrix}\right)\left(\begin{matrix}9\\-6\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-3\\-\frac{1}{3}&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}9\\-6\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9-3\left(-6\right)\\-\frac{1}{3}\times 9-\frac{4}{3}\left(-6\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=9,y=5
ទាញយកធាតុម៉ាទ្រីស x និង y។
-4x+9y=9,x-3y=-6
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-4x+9y=9,-4x-4\left(-3\right)y=-4\left(-6\right)
ដើម្បីធ្វើឲ្យ -4x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -4។
-4x+9y=9,-4x+12y=24
ផ្ទៀងផ្ទាត់។
-4x+4x+9y-12y=9-24
ដក -4x+12y=24 ពី -4x+9y=9 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
9y-12y=9-24
បូក -4x ជាមួយ 4x។ ការលុបតួ -4x និង 4x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-3y=9-24
បូក 9y ជាមួយ -12y។
-3y=-15
បូក 9 ជាមួយ -24។
y=5
ចែកជ្រុងទាំងពីនឹង -3។
x-3\times 5=-6
ជំនួស 5 សម្រាប់ y ក្នុង x-3y=-6។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x-15=-6
គុណ -3 ដង 5។
x=9
បូក 15 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=9,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។