រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-3x-2y=6,3x+3y=-9
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-3x-2y=6
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-3x=2y+6
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{3}\left(2y+6\right)
ចែកជ្រុងទាំងពីនឹង -3។
x=-\frac{2}{3}y-2
គុណ -\frac{1}{3} ដង 6+2y។
3\left(-\frac{2}{3}y-2\right)+3y=-9
ជំនួស -\frac{2y}{3}-2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+3y=-9។
-2y-6+3y=-9
គុណ 3 ដង -\frac{2y}{3}-2។
y-6=-9
បូក -2y ជាមួយ 3y។
y=-3
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{2}{3}\left(-3\right)-2
ជំនួស -3 សម្រាប់ y ក្នុង x=-\frac{2}{3}y-2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=2-2
គុណ -\frac{2}{3} ដង -3។
x=0
បូក -2 ជាមួយ 2។
x=0,y=-3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-3x-2y=6,3x+3y=-9
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-9\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3\times 3-\left(-2\times 3\right)}&-\frac{-2}{-3\times 3-\left(-2\times 3\right)}\\-\frac{3}{-3\times 3-\left(-2\times 3\right)}&-\frac{3}{-3\times 3-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}6\\-9\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-\frac{2}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}6\\-9\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6-\frac{2}{3}\left(-9\right)\\6-9\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=0,y=-3
ទាញយកធាតុម៉ាទ្រីស x និង y។
-3x-2y=6,3x+3y=-9
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\left(-3\right)x+3\left(-2\right)y=3\times 6,-3\times 3x-3\times 3y=-3\left(-9\right)
ដើម្បីធ្វើឲ្យ -3x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -3។
-9x-6y=18,-9x-9y=27
ផ្ទៀងផ្ទាត់។
-9x+9x-6y+9y=18-27
ដក -9x-9y=27 ពី -9x-6y=18 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-6y+9y=18-27
បូក -9x ជាមួយ 9x។ ការលុបតួ -9x និង 9x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
3y=18-27
បូក -6y ជាមួយ 9y។
3y=-9
បូក 18 ជាមួយ -27។
y=-3
ចែកជ្រុងទាំងពីនឹង 3។
3x+3\left(-3\right)=-9
ជំនួស -3 សម្រាប់ y ក្នុង 3x+3y=-9។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x-9=-9
គុណ 3 ដង -3។
3x=0
បូក 9 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=0
ចែកជ្រុងទាំងពីនឹង 3។
x=0,y=-3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។