ដោះស្រាយសម្រាប់ x, y
x=\frac{1}{3}\approx 0.333333333
y=4
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-3x+15y=59,3x+4y=17
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-3x+15y=59
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-3x=-15y+59
ដក 15y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{3}\left(-15y+59\right)
ចែកជ្រុងទាំងពីនឹង -3។
x=5y-\frac{59}{3}
គុណ -\frac{1}{3} ដង -15y+59។
3\left(5y-\frac{59}{3}\right)+4y=17
ជំនួស 5y-\frac{59}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+4y=17។
15y-59+4y=17
គុណ 3 ដង 5y-\frac{59}{3}។
19y-59=17
បូក 15y ជាមួយ 4y។
19y=76
បូក 59 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=4
ចែកជ្រុងទាំងពីនឹង 19។
x=5\times 4-\frac{59}{3}
ជំនួស 4 សម្រាប់ y ក្នុង x=5y-\frac{59}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=20-\frac{59}{3}
គុណ 5 ដង 4។
x=\frac{1}{3}
បូក -\frac{59}{3} ជាមួយ 20។
x=\frac{1}{3},y=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-3x+15y=59,3x+4y=17
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-3&15\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}59\\17\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-3&15\\3&4\end{matrix}\right))\left(\begin{matrix}-3&15\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&15\\3&4\end{matrix}\right))\left(\begin{matrix}59\\17\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-3&15\\3&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&15\\3&4\end{matrix}\right))\left(\begin{matrix}59\\17\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&15\\3&4\end{matrix}\right))\left(\begin{matrix}59\\17\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-3\times 4-15\times 3}&-\frac{15}{-3\times 4-15\times 3}\\-\frac{3}{-3\times 4-15\times 3}&-\frac{3}{-3\times 4-15\times 3}\end{matrix}\right)\left(\begin{matrix}59\\17\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{57}&\frac{5}{19}\\\frac{1}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}59\\17\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{57}\times 59+\frac{5}{19}\times 17\\\frac{1}{19}\times 59+\frac{1}{19}\times 17\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{1}{3},y=4
ទាញយកធាតុម៉ាទ្រីស x និង y។
-3x+15y=59,3x+4y=17
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\left(-3\right)x+3\times 15y=3\times 59,-3\times 3x-3\times 4y=-3\times 17
ដើម្បីធ្វើឲ្យ -3x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -3។
-9x+45y=177,-9x-12y=-51
ផ្ទៀងផ្ទាត់។
-9x+9x+45y+12y=177+51
ដក -9x-12y=-51 ពី -9x+45y=177 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
45y+12y=177+51
បូក -9x ជាមួយ 9x។ ការលុបតួ -9x និង 9x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
57y=177+51
បូក 45y ជាមួយ 12y។
57y=228
បូក 177 ជាមួយ 51។
y=4
ចែកជ្រុងទាំងពីនឹង 57។
3x+4\times 4=17
ជំនួស 4 សម្រាប់ y ក្នុង 3x+4y=17។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x+16=17
គុណ 4 ដង 4។
3x=1
ដក 16 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{1}{3},y=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}