រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-2x+3y=13,6x-5y=-3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-2x+3y=13
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-2x=-3y+13
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{2}\left(-3y+13\right)
ចែកជ្រុងទាំងពីនឹង -2។
x=\frac{3}{2}y-\frac{13}{2}
គុណ -\frac{1}{2} ដង -3y+13។
6\left(\frac{3}{2}y-\frac{13}{2}\right)-5y=-3
ជំនួស \frac{3y-13}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 6x-5y=-3។
9y-39-5y=-3
គុណ 6 ដង \frac{3y-13}{2}។
4y-39=-3
បូក 9y ជាមួយ -5y។
4y=36
បូក 39 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=9
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{3}{2}\times 9-\frac{13}{2}
ជំនួស 9 សម្រាប់ y ក្នុង x=\frac{3}{2}y-\frac{13}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{27-13}{2}
គុណ \frac{3}{2} ដង 9។
x=7
បូក -\frac{13}{2} ជាមួយ \frac{27}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=7,y=9
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-2x+3y=13,6x-5y=-3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-2&3\\6&-5\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-2\left(-5\right)-3\times 6}&-\frac{3}{-2\left(-5\right)-3\times 6}\\-\frac{6}{-2\left(-5\right)-3\times 6}&-\frac{2}{-2\left(-5\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}13\\-3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ម៉ាទ្រីសច្រាសគឺជា \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}&\frac{3}{8}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}13\\-3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}\times 13+\frac{3}{8}\left(-3\right)\\\frac{3}{4}\times 13+\frac{1}{4}\left(-3\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
ធ្វើនព្វន្ត។
x=7,y=9
ទាញយកធាតុម៉ាទ្រីស x និង y។
-2x+3y=13,6x-5y=-3
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
6\left(-2\right)x+6\times 3y=6\times 13,-2\times 6x-2\left(-5\right)y=-2\left(-3\right)
ដើម្បីធ្វើឲ្យ -2x និង 6x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 6 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -2។
-12x+18y=78,-12x+10y=6
ផ្ទៀងផ្ទាត់។
-12x+12x+18y-10y=78-6
ដក -12x+10y=6 ពី -12x+18y=78 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
18y-10y=78-6
បូក -12x ជាមួយ 12x។ ការលុបតួ -12x និង 12x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
8y=78-6
បូក 18y ជាមួយ -10y។
8y=72
បូក 78 ជាមួយ -6។
y=9
ចែកជ្រុងទាំងពីនឹង 8។
6x-5\times 9=-3
ជំនួស 9 សម្រាប់ y ក្នុង 6x-5y=-3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
6x-45=-3
គុណ -5 ដង 9។
6x=42
បូក 45 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=7
ចែកជ្រុងទាំងពីនឹង 6។
x=7,y=9
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។